最优化问题通常是指对于给定的某一函数,求其在指定作用域上的全局最小值(因为最小值与最大值可以很容易转化,即最大值问题可以转化成最小值问题)
一、无约束条件
这是最简单的情况,解决方法是函数对变量求导,令求导函数等于0的点可能是极值点。将结果带回原函数进行验证。
二、等式约束条件
设目标函数为f(x),约束条件为h_k(x),形如:
s.t. 表示subject to ,“受限于”的意思,l表示有l个约束条件。
则解决方法是消元法或者拉格朗日法。这里主要讲拉格朗日法,后面提到的KKT条件是对拉格朗日乘子法的一种泛化
例一:
例如给定椭球:
在下 ,求f(x,y,z)=8xyz的最大值。
当然这个问题实际可以先根据条件消去 z (消元法),然后带入转化为无条件极值问题来处理。但是有时候这样做很困难,甚至是做不到的,这时候就需要用拉格朗日乘数法了。 首先定义拉格朗日函数F(x):
(其中λ k \lambda kλk是各个约束条件的待定系数。)
然后解变量的偏导方程:
如果有i个约束条件,就应该有i+1个方程。求出的方程组的解就可能是最优化值(高等数学中提到的极值),将结果带回原方程验证就可得到解。
回到上面的题目,通过拉格朗日乘数法将问题转化为:
对F(x,y,z,λ)求偏导得:
联立前面三个方程得到b x = a y 和az=cx,带入第四个方程解之
带入解最大体积为:
再举一个便于理解的例子
例二:
求此方程的最大值:
s.t
因为只有一个未知数的限制条件,我们只需要用一个乘数λ.
将所有L方程的偏微分设为零,得到一个方程组,最大值是以下方程组的解中的一个:
由上面三个条件可以知道,取到最优解时,必然满足等式约束。
解得
实际上这边没必要对求偏导,求了也就是原来的等式约束。
三、不等式约束条件
设目标函数f(x),不等式约束为g(x),有的教程还会添加上等式约束条件h(x)。此时的约束优化问题描述如下:
则我们定义不等式约束下的拉格朗日函数L,则L表达式为:
其中f(x)是原目标函数,hj(x)是第j个等式约束条件,λj是对应的约束系数,gk是不等式约束,uk是对应的约束系数。
常用的方法是KKT条件,同样地,把所有的不等式约束、等式约束和目标函数全部写为一个式子L(a, b, x)= f(x) + ag(x)+bh(x)
KKT条件是说最优值必须满足以下条件:
L(a, b, x)对x求导为零;
h(x) =0;
a*g(x) = 0;
求取这些等式之后就能得到候选最优值
该方法适用于约束条件下求极值的问题。对于没有约束的极值问题,显然,如果某一点是极值的必要条件是该点的各方向的偏导数皆为零,也就是说,如果偏导数不全为零,那么就不可能是极值。