大模型解析
文章平均质量分 81
对现有的开源大模型架构进行解析,加深对已有算法的理解
TheJustice_
这个作者很懒,什么都没留下…
展开
-
Tiny Universe - Llama3架构
dataclassmultiple_of: int = 256 # MLP层隐层维度的指定计算参数(见FFN层): 这是一个整数类型的属性,表示模型的维度,默认值为4096。在深度学习模型中,维度通常指的是输入、输出或中间层的特征数量。: 表示模型中堆叠的层数,默认为6层。: 表示多头注意力机制中头的数量,默认为6。在Transformer模型中,多头注意力可以并行处理信息,提高模型的表达能力。: 这是一个可选的整数类型属性,表示分组的数量,默认为3。原创 2024-09-19 20:16:23 · 1244 阅读 · 0 评论 -
深入QLora大模型微调:原理与实践
由于QLora是一个虚构的模型,我将提供一个基于真实存在的预训练模型BERT的微调示例,使用Python和Hugging Face的Transformers库。QLora模型的微调是一个涉及多个步骤的复杂过程,但通过合理的策略和细致的调整,可以显著提升模型在特定任务上的表现。它通过减少自注意力层中的Query数量,降低了模型的参数量和计算成本,同时通过特殊的权重分配策略,保持了对关键信息的捕捉能力。根据任务的特点选择合适的损失函数,如交叉熵损失、序列损失等,以指导模型在微调过程中的学习方向。原创 2024-07-16 19:00:05 · 1418 阅读 · 0 评论 -
BERT架构的深入解析
BERT通过其双向Transformer编码器和预训练策略,在各种NLP任务中取得了卓越的性能。其成功不仅展示了预训练模型的强大能力,也为NLP研究和应用带来了新的方向和思路。随着研究的深入和技术的进步,BERT及其变种将在更多的应用场景中展现出其强大的潜力和价值。原创 2024-07-15 15:54:14 · 699 阅读 · 0 评论 -
Transformer架构的深入解析
Transformer架构主要由编码器(Encoder)和解码器(Decoder)两部分组成,每部分又包含多个相同的层。每一层包含两大核心组件:多头自注意力机制(Multi-Head Self-Attention)和前馈神经网络(Feed-Forward Neural Network)。Transformer架构通过其创新的自注意力机制和并行计算能力,解决了传统RNN和LSTM模型在处理长序列时的瓶颈,成为了现代NLP领域的主流方法。其在各种NLP任务中的优异表现,充分展示了其强大的能力和广泛的应用前景。原创 2024-07-15 12:29:20 · 865 阅读 · 0 评论 -
强化学习中的Double DQN、Dueling DQN和PER DQN算法详解及实战
Double DQN、Dueling DQN和优先经验回放DQN(PER DQN)都是对原始DQN的改进,各有其优点和适用场景。Double DQN通过减少过高估计提高了算法的稳定性;Dueling DQN通过分离状态价值和优势函数更好地评估状态;PER DQN通过优先采样重要经验加速了学习过程。这些改进算法在不同的应用场景下,可以选择合适的算法来提升强化学习的效果。原创 2024-07-07 15:35:10 · 1113 阅读 · 0 评论 -
强化学习中的Q-Learning和Sarsa算法详解及实战
Q-Learning和Sarsa是两种经典的强化学习算法,各有优缺点。Q-Learning通过最大化未来的预期回报来更新Q值,具有更强的探索性;而Sarsa则使用实际执行的动作进行更新,更注重策略的稳定性。通过实际代码示例,我们可以看到这两种算法的实现和应用。根据不同的应用场景,可以选择适合的算法来解决实际问题。原创 2024-07-07 12:18:51 · 1369 阅读 · 0 评论 -
深度学习中的卷积算子优化与GPU加速
/ 共享内存用于存储输入和卷积核的局部块// 加载输入数据到共享内存++kh) {++kw) {GPU加速和算子优化在深度学习中至关重要。通过使用高效库、混合精度训练、并行计算策略、操作融合、自定义CUDA内核等方法,可以显著提高深度学习模型的训练和推理速度。这些优化技术不仅提升了计算效率,还增强了模型在实际应用中的性能和可扩展性。原创 2024-06-11 14:48:46 · 1472 阅读 · 0 评论 -
深度学习中的卷积算子原理
卷积算子通过在输入数据上进行滑动窗口操作,提取局部特征;而GPU加速利用其强大的并行计算能力和高效内存架构,显著提升计算速度。PyTorch和TensorFlow分别通过动态计算图和静态计算图、自动微分、混合精度训练、操作融合等技术,实现深度学习任务的高效计算。这些优化技术在大规模深度学习任务中发挥着关键作用,确保模型训练和推理的高效性和准确性。原创 2024-06-11 14:43:50 · 1862 阅读 · 4 评论 -
RLHF(从人类反馈中进行强化学习)详解(四)
RLHF是一种通过人类反馈来指导强化学习的方法。在传统的强化学习中,智能体通过环境中的奖励信号进行学习,但在复杂任务中设计合适的奖励函数非常困难。RLHF通过让人类评估智能体的行为并提供反馈,使智能体能够更好地理解和完成复杂任务。原创 2024-06-09 20:38:32 · 1331 阅读 · 0 评论 -
DeepSeek-7B-chat 4bits量化 Qlora 微调
模型量化是将高精度的浮点数表示转换为低精度表示(如4bits),以减少模型的存储和计算资源。量化可以显著降低模型的内存占用和计算复杂度,同时保持较高的推理性能。Qlora(Quantized Low-Rank Adapter)是一种优化微调技术,适用于量化后的模型。通过低秩近似和适应层的结合,Qlora在微调阶段保持高效,并在不显著增加计算成本的情况下提高模型性能。环境配置task_type:模型类型:需要训练的模型层的名字,主要就是attention。原创 2024-06-08 14:31:19 · 1277 阅读 · 0 评论 -
RLHF(从人类反馈中进行强化学习)详解(三)
在经过了前两节的内容学习之后,我们对于RLHF(从人类反馈中进行强化学习)有了比较深入的认知,并且初步了解了RLHF中偏好数据集的引入,奖励模型的设置以及baseLLM的训练过程。在本节的学习中,我们将深入LLM的tune步骤,了解LLM的微调工作。原创 2024-06-06 13:48:23 · 1156 阅读 · 0 评论 -
RLHF(从人类反馈中进行强化学习)详解(二)
经过上节内容的学习,我们对于RLHF的主要步骤和关键方法都有了一些基础的认知,接下来让我们对于各个部分做进一步的深入学习。在创建偏好数据集的过程中,人工标注是一个费时费力的过程,但是这又是至关重要的一步,在本节内容中,主要使用已有的数据集进行讲解。该代码先载入数据集,将数据集放入字典,然后再构造一个输出字典的函数,方便观察与输出。这个代码的结果展示了数据集中的两个结果,并且要求标注者选择更喜欢的一个,即为选择。以上就是一些基础的偏好数据集载入方法,更具体的我们下节再见。首先,我们进行数据集的导入。原创 2024-05-30 23:25:57 · 273 阅读 · 0 评论 -
RLHF(从人类反馈中进行强化学习)详解(一)
RLHF,即Reinforcement Learning from Human Feedback(从人类反馈中进行强化学习),是一种结合了机器学习中的强化学习算法与人类主观判断的训练技术。这种方法旨在利用人类的直觉和判断力来指导人工智能系统学习更复杂、更贴近人类期望的行为模式,尤其是在自然语言处理(NLP)和决策制定等领域。原创 2024-05-30 22:29:50 · 4152 阅读 · 0 评论