Description
母亲节就要到了,小 H 准备送给她一个特殊的项链。这个项链可以看作一个用小写字
母组成的字符串,每个小写字母表示一种颜色。为了制作这个项链,小 H 购买了两个机器。第一个机器可以生成所有形式的回文串,第二个机器可以把两个回文串连接起来,而且第二个机器还有一个特殊的性质:假如一个字符串的后缀和一个字符串的前缀是完全相同的,那么可以将这个重复部分重叠。例如:aba和aca连接起来,可以生成串abaaca或 abaca。现在给出目标项链的样式,询问你需要使用第二个机器多少次才能生成这个特殊的项链。
Input
输入数据有多行,每行一个字符串,表示目标项链的样式。
Output
多行,每行一个答案表示最少需要使用第二个机器的次数。
Sample Input
abcdcba
abacada
abcdef
Sample Output
0
2
5
HINT
每个测试数据,输入不超过 5行
每行的字符串长度小于等于 50000
解题报告
这道题我们先用manacher算法算出每个点的的极长回文串的左右端点。然后我们做一次线段覆盖,亦即用已知的数个线段覆盖一个长度给定的区间。
区间覆盖的做法有很多,贪心可以,dp也可以,这里我们用dp(f[i]=min(f[j])+1)。然而这里的dp需要用树状数组优化。
代码如下:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5;
const int inf=1e9;
struct Node
{
int l,r;
bool operator<(const Node &rhs)const
{
return r<rhs.r;
}
}q[N+5];
int tot;
char s[N+5],s_new[N+5];
int n,m,p[N+5];
int C[N+5];
void modify(int x,int v)
{
for(int i=x;i;i-=i&(-i))
C[i]=min(C[i],v);
}
int query(int x)//利用树状数组的性质查询最小值
{
if(x==0) return 0;
int res=inf;
for(int i=x;i<=n;i+=i&(-i))
res=min(res,C[i]);
return res;
}
void Add(int l,int r)
{
l=l/2+1,r=r/2-1;
if(l>r) return ;
q[++tot]=(Node){l,r};
}
int init()
{
int len=strlen(s),j=1;
s_new[0]='$',s_new[1]='#';
for(int i=1;i<=n;i++)
s_new[++j]=s[i],s_new[++j]='#';
s_new[++j]='\0';
return j;
}
void Manacher()
{
m=init();
s_new[0]='+',s_new[m+1]='-',s_new[1]='#';
int mx=0,id;
for(int i=1;i<=m;i++)
{
if(mx>i)p[i]=min(mx-i,p[id*2-i]);
else p[i]=1;
while(s_new[i-p[i]]==s_new[i+p[i]])p[i]++;
Add(i-p[i],i+p[i]);//添加这个线段
if(p[i]+i>mx)mx=i+p[i],id=i;
}
}
int dp()
{
int ans=inf;
sort(q+1,q+tot+1);
for(int i=1;i<=tot;i++)
{
int x=query(q[i].l-1)+1;//左端点往前的最小值加上他自己
modify(q[i].r,x);//更新树状数组
if(q[i].r==n)ans=min(ans,x);
}
return ans;
}
int main()
{
while(scanf("%s",s+1)==1)
{
memset(p,0,sizeof(p));
tot=0;
n=strlen(s+1);
for(int i=1;i<=n;i++)C[i]=inf;
Manacher();
printf("%d\n",dp()-1);
}
return 0;
}