题目链接:235. 二叉搜索树的最近公共祖先 - 力扣(LeetCode)
class Solution
{
public:
TreeNode *lowestCommonAncestor(TreeNode *root, TreeNode *p, TreeNode *q)
{
if(root==nullptr||root==p||root==q) return root;
TreeNode *left=lowestCommonAncestor(root->left,p,q);
TreeNode *right=lowestCommonAncestor(root->right,p,q);
if(left&&right) return root;
else if(left&&!right) return left;
else if(!left&&right) return right;
else return nullptr;
}
};
偷懒了,用昨天学的二叉树寻找最近公共祖先的方式做了。并没有考虑有二叉搜索树带来的便捷。
题目链接:701. 二叉搜索树中的插入操作 - 力扣(LeetCode)
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
};
利用二叉搜索树的特性,大的放右,小的放左,碰到空就放下就行。
题目链接:450. 删除二叉搜索树中的节点 - 力扣(LeetCode)
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
if (root->val == key) {
// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
if (root->left == nullptr && root->right == nullptr) {
///! 内存释放
delete root;
return nullptr;
}
// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
else if (root->left == nullptr) {
auto retNode = root->right;
///! 内存释放
delete root;
return retNode;
}
// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
else if (root->right == nullptr) {
auto retNode = root->left;
///! 内存释放
delete root;
return retNode;
}
// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
// 并返回删除节点右孩子为新的根节点。
else {
TreeNode* cur = root->right; // 找右子树最左面的节点
while(cur->left != nullptr) {
cur = cur->left;
}
cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
TreeNode* tmp = root; // 把root节点保存一下,下面来删除
root = root->right; // 返回旧root的右孩子作为新root
delete tmp; // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
return root;
}
}
if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;
}
};
最后还是看了答案。比较难理清,特别是第五种情况。
情况二:找到要删除的节点,左右都为空,直接删除就行,记得返回空指针。
情况三,四:左右孩子有一个不为空的,删除节点,孩子补位,返回补位的节点。
情况五:左右孩子都不为空,这时候就要把左孩子和左孩子的全部孩子都移到 右孩子的 左孩子的左边。(因为是二叉树,所以移动父节点就能把他所有孩子节点移动)。(很绕的情况,但是想一想还是能理解。)最后把右孩子赋给这个节点,删除节点。