代码随想录算法训练营第二十六天 | LeeCode 39. 组合总和 ,40.组合总和II ,131.分割回文串

题目链接:39. 组合总和 - 力扣(LeetCode)

class Solution
{
private:
    vector<vector<int>> result;
    vector<int> nums;
    void backtracking(int target,int startIndex,int sum,vector<int> &candidates)
    {
        if(sum==target){
            result.push_back(nums);
            return;
        }else if(sum>target){
            return;
        }
        for(int i=startIndex;i<candidates.size();i++){
            nums.push_back(candidates[i]);
            sum+=candidates[i];
            backtracking(target,i,sum,candidates);
            nums.pop_back();
            sum-=candidates[i];
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int> &candidates, int target)
    {
        result.clear();
        nums.clear();
        backtracking(target,0,0,candidates);
        return result;
    }
};

老三样,还是之前的代码套一下。改变一下结束条件和某些参数就行。

题目链接:40. 组合总和 II - 力扣(LeetCode)

class Solution
{
private:
    vector<vector<int>> result;
    vector<int> nums;
    void backtracking(int target,int startIndex,int sum,vector<int> &candidates)
    {
        if(sum==target){
            result.push_back(nums);
            return;
        }else if(sum>target){
            return;
        }
        for(int i=startIndex;i<candidates.size();i++){
            if (i > startIndex && candidates[i] == candidates[i - 1]) {
                continue;
            }
            nums.push_back(candidates[i]);
            sum+=candidates[i];
            backtracking(target,i+1,sum,candidates);
            nums.pop_back();
            sum-=candidates[i];
        }
    }
public:
    vector<vector<int>> combinationSum2(vector<int> &candidates, int target)
    {
        result.clear();
        nums.clear();
        sort(candidates.begin(),candidates.end());
        backtracking(target,0,0,candidates);
        return result;
    }
};

其实想到了用set来去重。看了一下解析发现这样子简单。大抵方式和上题一样,去重就先排序然后判断这个数和上个数是否相同就行。

题目链接:131. 分割回文串 - 力扣(LeetCode)

class Solution {
private:
    vector<vector<string>> result;
    vector<string> path; // 放已经回文的子串
    void backtracking (const string& s, int startIndex) {
        // 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
        if (startIndex >= s.size()) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < s.size(); i++) {
            if (isPalindrome(s, startIndex, i)) {   // 是回文子串
                // 获取[startIndex,i]在s中的子串
                string str = s.substr(startIndex, i - startIndex + 1);
                path.push_back(str);
            } else {                                // 不是回文,跳过
                continue;
            }
            backtracking(s, i + 1); // 寻找i+1为起始位置的子串
            path.pop_back(); // 回溯过程,弹出本次已经添加的子串
        }
    }
    bool isPalindrome(const string& s, int start, int end) {
        for (int i = start, j = end; i < j; i++, j--) {
            if (s[i] != s[j]) {
                return false;
            }
        }
        return true;
    }
public:
    vector<vector<string>> partition(string s) {
        result.clear();
        path.clear();
        backtracking(s, 0);
        return result;
    }
};

不是很绷得住。这种问题找回文应该早就会了才对,想了半天才想出来。最后抄了卡尔的,感觉挺简洁的,直接用start和end判断回文。我原本是想用栈的,写了很长。写了判断回文函数后,就套模板就行。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值