class Solution
{
private:
vector<vector<int>> result;
vector<int> nums;
void backtracking(int target,int startIndex,int sum,vector<int> &candidates)
{
if(sum==target){
result.push_back(nums);
return;
}else if(sum>target){
return;
}
for(int i=startIndex;i<candidates.size();i++){
nums.push_back(candidates[i]);
sum+=candidates[i];
backtracking(target,i,sum,candidates);
nums.pop_back();
sum-=candidates[i];
}
}
public:
vector<vector<int>> combinationSum(vector<int> &candidates, int target)
{
result.clear();
nums.clear();
backtracking(target,0,0,candidates);
return result;
}
};
老三样,还是之前的代码套一下。改变一下结束条件和某些参数就行。
题目链接:40. 组合总和 II - 力扣(LeetCode)
class Solution
{
private:
vector<vector<int>> result;
vector<int> nums;
void backtracking(int target,int startIndex,int sum,vector<int> &candidates)
{
if(sum==target){
result.push_back(nums);
return;
}else if(sum>target){
return;
}
for(int i=startIndex;i<candidates.size();i++){
if (i > startIndex && candidates[i] == candidates[i - 1]) {
continue;
}
nums.push_back(candidates[i]);
sum+=candidates[i];
backtracking(target,i+1,sum,candidates);
nums.pop_back();
sum-=candidates[i];
}
}
public:
vector<vector<int>> combinationSum2(vector<int> &candidates, int target)
{
result.clear();
nums.clear();
sort(candidates.begin(),candidates.end());
backtracking(target,0,0,candidates);
return result;
}
};
其实想到了用set来去重。看了一下解析发现这样子简单。大抵方式和上题一样,去重就先排序然后判断这个数和上个数是否相同就行。
题目链接:131. 分割回文串 - 力扣(LeetCode)
class Solution {
private:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经添加的子串
}
}
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
public:
vector<vector<string>> partition(string s) {
result.clear();
path.clear();
backtracking(s, 0);
return result;
}
};
不是很绷得住。这种问题找回文应该早就会了才对,想了半天才想出来。最后抄了卡尔的,感觉挺简洁的,直接用start和end判断回文。我原本是想用栈的,写了很长。写了判断回文函数后,就套模板就行。