支持向量机(SVM)

本文深入探讨支持向量机(SVM),包括基本概念、软间隔最大化、非线性SVM以及SMO算法。通过解决凸二次规划问题,SVM寻找能正确分类训练数据且几何间隔最大的超平面。文中还提到了如何用Python实现SVM,并给出了鸢尾花数据集的示例应用。
摘要由CSDN通过智能技术生成

支持向量机(SVM)

github地址https://github.com/thesouther/MachineLearningAndMatrixAnalysis/blob/master/SVM/SVM.ipynb

1. 基本概念

支持向量: 在线性可分的情况下,训练数据集中与分类超平面距离最近的样本点的实例。
间隔
间隔边界
函数间隔: 对于给定的训练数据集 T T T和超平面 ( w , b ) (w,b) (w,b),定义超平面和样本点 ( x i , y i ) (x_i,y_i) (xi,yi)的函数间隔为:
γ ^ i = y i ( w ⋅ x i + b ) (1) \hat{\gamma}_i=y_i(w\cdot{x_i}+b) \tag{1} γ^i=yi(wxi+b)(1)
所有样本点关于超平面的函数间隔可以表示分类预测正确性和确信度:
γ ^ = m i n i = 1 , . . . , N γ ^ i (2) \hat{\gamma}= \mathop{min}\limits_{i=1,...,N}\hat{\gamma}_i \tag{2} γ^=i=1,...,Nminγ^i(2)
该间隔当 w w w b b b等比例扩大时,间隔也扩大,所以引入几何间隔,使间隔度量确定。

几何间隔: 超平面 ( w , b ) (w,b) (w,b)关于样本点 ( x i , y i ) (x_i,y_i) (xi,yi)的几何间隔一般使实例到超平面的带符号距离,当样本点被超平面分类正确时就是实例点到超平面的距离。
γ i = y i ( w ∣ ∣ w ∣ ∣ ⋅ x i + b ∣ ∣ w ∣ ∣ ) (3) {\gamma}_i=y_i\left(\frac{w}{||w||}\cdot x_i + \frac{b}{||w||}\right) \tag{3} γi=yi(wwxi+wb)(3)

γ = m i n i = 1 , . . . , N γ i (4) {\gamma}= \mathop{min}\limits_{i=1,...,N}{\gamma}_i \tag{4} γ=i=1,...,Nminγi(4)

由上可以函数间隔和几何间隔的关系:
γ = γ ^ ∣ ∣ w ∣ ∣ \gamma=\frac{\hat{\gamma}}{||w||} γ=wγ^
硬间隔最大化: 对训练数据找到几何间隔最大化的超平面意味着:以充分大的确信度对训练数据进行分类。
max ⁡ w , b γ s . t .     y i ( w ∣ ∣ w ∣ ∣ ⋅ x i + b ∣ ∣ w ∣ ∣ ) ≥ γ (5) \begin{aligned} &\max\limits_{w,b} \gamma \\ &s.t.\ \ \ y_i\left(\frac{w}{||w||}\cdot x_i + \frac{b}{||w||}\right) \ge \gamma \end{aligned}\tag{5}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值