最优方向法(MOD)

MOD(Method of Optimal Direction)是一种基于样本学习的字典学习算法,目标是实现表征误差最小化。算法通过迭代更新字典,使得(Y-DX)XT=0。虽然它在几十次迭代后通常能收敛,但矩阵求逆带来的高计算量是其主要缺点。流程包括初始化字典,然后迭代更新稀疏系数和字典,直至满足终止条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法描述

求解模型:

minixi0s.t.YDX2Fε

minYDX2Fs.t.ixi0
### 基于人工势场实现自助泊车算法原理 #### 一、基本概念 人工势场是一种用于机器人导航和路径规划的有效方。该方的核心在于在环境空间内引入虚拟的物理场,其中障碍物周围存在斥力势场而目标位置则有吸引力势场。对于车辆而言,这种设置可以引导其避开障碍并朝向期望的目的地移动。 #### 二、具体实施过程 为了使汽车能够自主完成停车动作,需要定义合适的数学模型来描述这些力的作用方式: - **引力项**:由最终停车位的位置决定,随着距离减小逐渐增强; \[ U_{att}(q)=\frac{1}{2}k_{a}\|q-q^{*}\|^2 \] 这里 \( q \) 表示当前坐标, \( q^* \) 是目的地坐标, 而常数因子 \( k_a >0 \)[^2]. - **斥力项**:针对每一个检测到的静态或动态障碍物计算得到;当接近任何物体时增加直至超过一定阈值后保持不变。 \[ U_{rep_i}(q)=\left\{\begin{array}{ll} \frac{1}{2}k_r(\frac{1}{d}-\frac{1}{r})^2 & d<r \\ 0 & otherwise\\ \end{array}\right.\] 此处 \( r \) 定义为影响范围内的最小安全间距; \( d \) 则代表实际测量的距离; 参数 \( k_r>0 \) 控制排斥强度. 总的能量函数即为两者之和: \[U(q)=U_{att}(q)+∑_i^nU_{rep_i}(q)\] 通过求解上述能量方程关于位姿变化量的一阶导数可以获得最优运动方向. #### 三、MATLAB代码片段展示 下面给出一段简化版的人工势场应用于自动泊车场景下的 MATLAB 伪代码表示形式: ```matlab function path = artificialPotentialFieldParking(startPos,endPos,map) % startPos:起始位置 [x,y,theta] % endPos : 终点位置 [x,y,theta] % map :地图矩阵 (包含障碍物信息) % 初始化参数... ka=...;% 吸引力系数 kr=... ; % 斥力系数 eta= ...; % 步长控制变量 epsilon=...; % 收敛精度标准 currentPosition=startPos; while norm(currentPosition(1:2)-endPos(1:2))>= epsilon F_att=-gradientAttractionForce(currentPosition,endPos,ka); F_rep=zeros(size(F_att)); for i=1:length(map.obstacles) FiRepulsion=gradientRepulsiveForces(currentPosition,... map.obstacles(i).position,map.obstacles(i).radius,kr); F_rep=F_rep+FiRepulsion; end totalForce=F_att+F_rep; deltaTheta=atan2(totalForce(2),totalForce(1))-currentPosition(end); currentPosition=[currentPosition+[cos(deltaTheta);sin(deltaTheta)]*eta ,mod(currentPosition(end)+deltaTheta,pi)]; path(:,length(path))=currentPosition; end ``` 此段程序实现了从给定起点至终点之间寻找一条平滑无碰撞轨迹的功能,并将其记录下来供后续可视化处理使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值