判断给定的二叉树是否为二叉排序树(递归思想)

  1. 基本设计思想

对二叉排序树来说,其中序遍历序列为递增有序序列,因此,对给定的二叉树进行中序遍历,如果能保证前一个值不比后一个值大,则说明该二叉树
是一棵二叉排序树。

  1. 算法如下
int predt = -300;		//predt小于树中的任何值,predt始终记录着当前所访问结点的前驱的值
int judBST(BTNode *bt)
{
	int b1, b2;
	if (bt == NULL)		//空树是二叉排序树
	{
		return 1;
	}
	else
	{
		b1 = judBST(bt->lchild);	//递归地判断左子树是否是二叉排序树
		if (b1 == 0 || predt > bt->key)	//左子树不是二叉排序树或者predt大于当前根结点值,则该树不是二叉排序树
			return 0;
		predt = bt->key;	//将要访问右子树根的时候,predt记录下当前结点根结点的值
		b2 = judBST(bt->rchild);	//递归地判断右子树是否为二叉排序树
		return b2;
	}
}
### 回答1: 判断给定二叉树是否二叉排序树,可以按照以下步骤进行: 1. 对于二叉排序树中的任意一个节点,其左子树中的所有节点都小于该节点,其右子树中的所有节点都大于该节点。 2. 对于二叉排序树中的任意一个节点,其左右子树都必须是二叉排序树。 根据以上两点,我们可以得出以下算法: 1. 判断二叉树是否为空树或只有一个节点,如果是,则该二叉树二叉排序树。 2. 对于非空二叉树,取出根节点的值,判断其左子树和右子树是否都为二叉排序树。 3. 对于根节点的左子树,判断其所有节点的值是否都小于根节点的值,如果有任意一个节点的值大于等于根节点的值,则该二叉树不是二叉排序树。 4. 对于根节点的右子树,判断其所有节点的值是否都大于根节点的值,如果有任意一个节点的值小于等于根节点的值,则该二叉树不是二叉排序树。 5. 如果以上所有判断都通过,则该二叉树二叉排序树。 希望这个算法对你有帮助。 <br>### 回答2: 二叉排序树是一种特殊的二叉树,它满足以下条件: 1. 左子树上所有节点的值都小于根节点的值; 2. 右子树上所有节点的值都大于根节点的值; 3. 左右子树都是二叉排序树; 基于以上定义,我们可以得到一个判断一个给定二叉树是否二叉排序树算法。该算法主要有以下两步: 1. 中序遍历整棵二叉树,得到一个有序的节点序列,如果这个序列不是有序的,那么该二叉树就不是二叉排序树; 2. 遍历中序遍历得到的有序节点序列,比较相邻两个节点的大小,如果前一个节点的值大于等于后一个节点的值,那么该二叉树就不是二叉排序树,否则它就是一棵二叉排序树。 具体实现上,可以通过递归方式来进行中序遍历。在遍历过程中,将遍历到的节点依次加入到一个序列中,遍历完成后,再遍历一次该序列,判断其中相邻两个节点的大小关系即可。如果是一棵二叉排序树,则序列应该是升序排列的。 该算法的时间复杂度为O(n),其中n为二叉树中节点的个数。具体实现如下: ``` // 判断给定二叉树是否二叉排序树 bool isBST(TreeNode* root) { vector<int> nodes; // 用于存放中序遍历得到的节点序列 inorderTraversal(root, nodes); // 中序遍历二叉树,得到有序节点序列 int n = nodes.size(); for (int i = 1; i < n; i++) { if (nodes[i] <= nodes[i-1]) { return false; // 如果相邻两个节点的大小关系不满足,返回false } } return true; // 遍历完成后仍没有返回false,说明该二叉树是一棵二叉排序树 } // 中序遍历二叉树,将节点加入到vector中 void inorderTraversal(TreeNode* root, vector<int>& nodes) { if (root == nullptr) { return; } inorderTraversal(root->left, nodes); nodes.push_back(root->val); inorderTraversal(root->right, nodes); } ``` <br>### 回答3: 二叉排序树也叫二叉搜索树,是一种特殊的二叉树。它的左子树上所有节点的值均小于它的根节点的值,而右子树上的所有节点的值均大于它的根节点的值。我们可以通过以下算法判断给定二叉树是否二叉排序树。 1. 对于给定二叉树判断是否为空。若为空,直接返回 true。 2. 对于非空的二叉树判断它的左子树是不是二叉排序树。如果不是,直接返回 false。 3. 判断根节点的值是否大于其左子树中最大节点的值。如果不是,直接返回 false。 4. 判断根节点的值是否小于其右子树中最小节点的值。如果不是,直接返回 false。 5. 递归判断右子树是否二叉排序树。如果它不是,直接返回 false。 6. 若一直没有返回 false,说明该二叉树二叉排序树,返回 true。 这个算法的主要思路是对于每个节点,都判断是否满足二叉排序树的性质,并递归判断其左右子树是否也是二叉排序树。时间复杂度为 O(nlogn) 或 O(n^2),空间复杂度为 O(h),其中 h 为树的高度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值