LCS算法&完全背包问题

1.问题

  求解动态规划中关于最长公共子序列LCS问题、完全背包问题.

2.解析

最长公共子序列LCS问题:

在这里插入图片描述在这里插入图片描述
示例:
假设X=ABCBDAB Y=BDCABA
在这里插入图片描述
(1) i=1
  A.J=1 X.A <> Y.B C[1,1]=MAX(C[1,0],C[0,1])=MAX(0,0)=0
  B.J=2 X.A <> Y.D C[1,2]=MAX(C[1,1],C[0,2])=MAX(0,0)=0
  C.J=3 X.A <> Y.C C[1,3]=MAX(C[1,2],C[0,3])=MAX(0,0)=0
  D.J=4 X.A == Y.A C[1,4]=C[0,3]+1=1
  E.J=5 X.A <> Y.B C[1,5]=MAX(C[1,4],C[0,5])=MAX(1,0)=1
  F.J=6 X.A == Y.A C[1,6]=C[0,5]+1=1
(2) i=2
  A.J=1 X.B == Y.B C[2,1]=C[1,0]+1=1
  B.J=2 X.B <> Y.D C[2,2]=MAX(C[2,1],C[1,2])=MAX(1,0)=1
  C.J=3 X.B <> Y.C C[2,3]=MAX(C[2,2],C[1,3])=MAX(1,0)=1
  D.J=4 X.B <> Y.A C[2,4]=MAX(C[2,3],C[1,4])=MAX(1,1)=1
  E.J=5 X.B== Y.B C[2,5]=C[1,4]+1=2
  F.J=6 X.B <> Y.A C[2,6]=MAX(C[2,5],C[1,6])=MAX(2,1)=2
(3) i=3
  A.J=1 X.C <> Y.B C[3,1]=MAX(C[3,0],C[2,1])=MAX(0,1)=1
  B.J=2 X.C <> Y.D C[3,2]=MAX(C[3,1],C[2,2])=MAX(1,1)=1
  C.J=3 X.C == Y.C C[3,3]=C[2,2]+1=2
  D.J=4 X.C <> Y.A C[3,4]=MAX(C[3,3],C[2,4])=MAX(2,1)=2
  E.J=5 X.C <> Y.B C[3,5]=MAX(C[3,4],C[2,5])=MAX(2,2)=2
  F.J=6 X.C <> Y.A C[3,6]=MAX(C[3,5],C[2,6])=MAX(2,2)=2
(4) i=4
  A.J=1 X.B == Y.B C[4,1]=C[3,0]+1=1
  B.J=2 X.B <> Y.D C[4,2]=MAX(C[4,1],C[3,2])=MAX(1,1)=1
  C.J=3 X.B <> Y.C C[4,3]=MAX(C[4,2],C[3,3])=MAX(1,2)=2
  D.J=4 X.B <> Y.A C[4,4]=MAX(C[4,3],C[3,4])=MAX(2,2)=2
  E.J=5 X.B == Y.B C[4,5]=C[3,4]+1=3
  F.J=6 X.B <> Y.A C[4,6]=MAX(C[4,5],C[3,6])=MAX(3,2)=3
(5) i=5
  A.J=1 X.D <> Y.B C[5,1]=MAX(C[5,0],C[4,1])=MAX(0,1)=1
  B.J=2 X.D == Y.D C[5,2]=C[4,1]+1=2
  C.J=3 X.D <> Y.C C[5,3]=MAX(C[5,2],C[4,3])=MAX(2,2)=2
  D.J=4 X.D <> Y.A C[5,4]=MAX(C[5,3],C[4,4])=MAX(2,2)=2
  E.J=5 X.D <> Y.B C[5,5]=MAX(C[5,4],C[4,5])=MAX(2,3)=3
  F.J=6 X.D <> Y.A C[5,6]=MAX(C[5,5],C[4,6])=MAX(3,3)=3
(6) i=6
  A.J=1 X.A <> Y.B C[6,1]=MAX(C[6,0],C[5,1])=MAX(0,1)=1
  B.J=2 X.A <> Y.D C[6,2]=MAX(C[6,1],C[5,2])=MAX(1,2)=2
  C.J=3 X.A <> Y.C C[6,3]=MAX(C[6,2],C[5,3])=MAX(2,2)=2
  D.J=4 X.A == Y.A C[6,4]=C[5,3]+1=3
  E.J=5 X.A <> Y.B C[6,5]=MAX(C[6,4],C[5,5])=MAX(3,3)=3
  F.J=6 X.A == Y.A C[6,6]=C[5,5]+1=4
(7) i=7
  A.J=1 X.B == Y.B C[7,1]=C[6,0]+1=1
  B.J=2 X.B <> Y.D C[7,2]=MAX(C[7,1],C[6,2])=MAX(1,2)=2
  C.J=3 X.B <> Y.C C[7,3]=MAX(C[7,2],C[6,3])=MAX(2,2)=2
  D.J=4 X.B <> Y.A C[7,4]=MAX(C[7,3],C[6,4])=MAX(2,3)=3
  E.J=5 X.B == Y.B C[7,5]=C[6,4]+1=4
  F.J=6 X.B <> Y.A C[7,6]=MAX(C[7,5],C[6,6])=MAX(4,4)=4

根据状态转移方程倒过来递推得到最长公共子序列
可以发现右两个最长公共子序列,分别是BCBA BDAB

背包算法:

在这里插入图片描述在这里插入图片描述

示例:
假设有n=4个物品,m=10的背包大小
物品价值分别为1、3、5、9,重量为2、3、4、7
在这里插入图片描述

3.设计

LCS算法:

#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
char a[100],b[100];
int dp[100][100];

int main() {
    cin>>a+1>>b+1;
    int len1=strlen(a+1);
    int len2=strlen(b+1);
    for(int i=1;i<=len1;i++){
        for(int j=1;j<=len2;j++){
            if(a[i]==b[j])  dp[i][j]=dp[i-1][j-1]+1;
            else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
        }
    }
    cout<<dp[len1][len2]<<endl;
}


//input:
//ABCBDAB
//BDCABA
//OUTPUT:
//4

完全背包问题:

#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
int main(){
    int totalWeight,n;
    cout<<"请输入背包容量和数量:"<<endl;
    cin>>totalWeight>>n;
    
    int w[n+1]={0};
    int v[n+1]={0};
    
    cout<<"请输入物品重量和价值:"<<endl;
    for(int i=1;i<=n;i++){
        cin>>w[i]>>v[i];
    }
    
    int dp[totalWeight+1] = { 0 };

    for (int i = 1; i <= n; i++)
        for (int j = w[i]; j <= totalWeight;j++)
                dp[j] = max(dp[j],dp[j - w[i]] + v[i]);

    cout << "总的价值为: " << dp[totalWeight] << endl;
    return 0;
}

//input:
//10 4
//2 1
//3 3
//4 5
//7 9
//output:
//12

4.分析

LCS算法的时间复杂度为两重循环为O(n*m)
完全背包的时间复杂度为两重循环为O(n*m)

5.源码

https://github.com/Chenzh0205/Algorithm/tree/main/%E4%BD%9C%E4%B8%9A9

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值