完全背包问题

1. 问题描述

N 种物品, 物品 i 的重量为 wi , 价格为 vi , 背包所能承受的最大重量为 W

其中,

N,W,wi,vi0

若每种物品仅有一件, 即每种物品的装入状态为 xi , xi{0,1} , 则称该问题为0-1背包问题

若每种物品可取任意件, 则称该问题为完全背包问题

2. 转化为0-1背包问题

完全背包问题是对0-1背包问题的拓展, 它取消了对每种物品拾取数量的限制。

一种朴素的思想就是将完全背包问题转化为0-1背包问题, 依然采用动态规划的思想进行求解。

  • xi 为物品 i 的数量, 则一定有 xi[0,Wwi], 即可看成物品总数为 Ni=1Wwi 的0-1背包问题。

  • 状态转移方程为,

    dp(1,j)=jw1v1

    dp(i,j)=max(dp(i1,jkwi)+kvi)    0kwij

  • 0-1背包问题需要填充 N(W+1) 个状态, 每次填充仅需 O(1) 时间, 时间复杂度为 O(NW)

  • 完全背包问题需要填充 Ni=1Wwi(W+1) 个状态, 每次填充仅需 O(1) 时间, 时间复杂度为 O(NWNi=1Wwi)

  • 还可以这样考虑:

    根据状态转移方程, 二维数组规模仍然为 N(W+1) , 每个状态需要计算 jwi 个结果的最大值, 即每次填充花费 O(jwi) , 时间复杂度为 O(NWNi=1Wwi)

3. O(NW) 经典算法

以上解题策略在时间复杂度上并非最优, 每个状态的更新过程存在大量重复计算, 即 max(dp(i1,jkwi)+kvi)

  • 假设, W=6 , 第 i 种物品 wi=2, 状态更新计算量如下,

    k0123456
    jwi 0011223
    0 dp(i1,j) dp(i1,j) dp(i1,j) dp(i1,j) dp(i1,j) dp(i1,j) dp(i1,j)
    1 dp(i1,j2)+vi dp(i1,j2)+vi dp(i1,j2)+vi dp(i1,j2)+vi dp(i1,j2)+vi
    2 dp(i1,j4)+2vi dp(i1,j4)+2vi dp(i1,j4)+2vi
    3 dp(i1,j6)+3vi
  • 若背包容量 j 从小到大增长, 对于同种物品数量增加的情况, 状态更新可借用同一行先前计算的结果, 从而降低时间复杂度。

  • 据此, 状态改变无非两种情况:

    (1) 增加同种物品数量, 即 dp(i,jwi)+vi

    (2) 准备开始添加下一种物品, 即 dp(i1,j)

  • 状态转移方程为,

    dp(i,j)=max(dp(i1,j),dp(i,jwi)+vi)

  • 对比0-1背包问题的状态转移方程,

    dp(i,j)=max(dp(i1,j),dp(i1,jwi)+vi)

  • 同样需要填充 N(W+1) 个状态,每个状态计算的时间复杂度为 O(1) , 故算法的时间复杂度为 O(NW)

4. 算法优化

完全背包问题同样具有存储空间优化潜力, 即将存储空间由二维数组 {N(W+1)} 压缩为一维数组 {W+1}

状态更新应采用顺序遍历, 即j从最小值开始, 从小到大更新dp数组。 原因有二:

(1) 0-1背包问题, 需要用到前行较小结果, 即 dp(i1,jwi) ;完全背包问题, 只需要用到前行同列结果, 不存在顺序覆盖问题。

(2) 完全背包问题, 需要用到同行较小结果, 顺序处理是必须的。

状态转移方程变为,

dp(j)=max(dp(j),dp(jwi)+vi)

5. 问题拓展

若将约束条件改为,总重量恰好等于背包容量, 拓展为装满背包问题

处理思路与完全装满的0-1背包问题完全相同, 即修改数组初始化值为-INF, 且按照装满原则初始化首行。

6. 典型例题

Ver 2.0 2017-2-18

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值