POJ 1019 解题报告

这道题我用的是两次二分,先求出在哪个组(1~1,1~2,1~3,。。。,1~99,。。。等都各自是一个组),然后再次二分,求出是这个组里面哪个数字。

思路是这位神牛是一样的:http://poj.org/showmessage?message_id=345696.但是代码相对于他的差了太多,二分都是自己手写的。lower_bound这个函数以后要多尝试用下。还有用公式求的:http://www.slyar.com/blog/poj-1019-cpp.html。我不觉得有什么可推广到别的题的可能。

thestoryofsnow1019Accepted156K0MSC++3526B
/* 
ID: thestor1 
LANG: C++ 
TASK: poj1019 
*/
#include <iostream>
#include <fstream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <limits>
#include <string>
#include <vector>
#include <list>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <algorithm>
#include <cassert>

using namespace std;

const int MAXNDIGITS = 5;

int main()
{
	// 1 ~ 9
	// 10 ~ 99
	// 2147483647	
	// scanf();
	std::vector<unsigned long long> totaldigits(MAXNDIGITS + 1, 0), NINEDIGITS(MAXNDIGITS + 1, 0), BASE(MAXNDIGITS + 2, 0), totaldigits2(MAXNDIGITS + 1, 0);
	totaldigits[0] = 0;
	NINEDIGITS[0] = 0;
	BASE[1] = 1;
	totaldigits2[0] = 0;

	for (int ndigits = 1; ndigits <= MAXNDIGITS; ++ndigits)
	{
		totaldigits[ndigits] = totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (BASE[ndigits] * 10 - BASE[ndigits]) * ndigits) * (BASE[ndigits] * 10 - BASE[ndigits]) / 2;
		// printf("[debug]%llu + %llu = %llu\n", totaldigits[ndigits - 1], (BASE[ndigits - 1] * 10 - BASE[ndigits - 1]) * ndigits, totaldigits[ndigits]);
		BASE[ndigits + 1] = BASE[ndigits] * 10;
		NINEDIGITS[ndigits] = NINEDIGITS[ndigits - 1] + (BASE[ndigits] * 10 - BASE[ndigits]) * ndigits;

		totaldigits2[ndigits] = totaldigits2[ndigits - 1] + (10 * BASE[ndigits] - BASE[ndigits]) * ndigits;
	}

	// for (int ndigits = 0; ndigits <= MAXNDIGITS; ++ndigits)
	// {
	// 	printf("ndigits: %2d, totaldigits: %llu, NINEDIGITS: %llu\n", ndigits, totaldigits[ndigits], NINEDIGITS[ndigits]);
	// }

	int T;
	scanf("%d", &T);
	for (int t = 0; t < T; ++t)
	{
		int num;
		scanf("%d", &num);
		
		int ndigits = 1;
		while (totaldigits[ndigits] < num && ndigits <= MAXNDIGITS)
		{
			ndigits++;
		}
		assert (ndigits <= MAXNDIGITS);

		if (totaldigits[ndigits] == num)
		{
			printf("9\n");
			continue;
		}

		int low = BASE[ndigits], high = 10 * BASE[ndigits] - 1, mid;
		unsigned long long digits = 0;
		while (low <= high)
		{
			mid = low + (high - low) / 2;
			digits = totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (mid - BASE[ndigits] + 1) * ndigits) * (mid - BASE[ndigits] + 1) / 2;
			if (digits >= num)
			{
				high = mid - 1;
			}
			else
			{
				low = mid + 1;
			}
		}
		// assert (totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (low - BASE[ndigits] + 1) * ndigits) * (low - BASE[ndigits] + 1) / 2 >= digits);

		// ndigits, low, digits
		digits = totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (low - 1 - BASE[ndigits] + 1) * ndigits) * (low - 1 - BASE[ndigits] + 1) / 2;
		// digits -= (NINEDIGITS[ndigits - 1] + (low - BASE[ndigits] + 1) * ndigits);

		// now it is [1, low]
		int ndigits2 = 1;
		while (digits + totaldigits2[ndigits2] < num && ndigits2 <= ndigits)
		{
			ndigits2++;
		}
		assert (ndigits2 <= ndigits);

		digits += totaldigits2[ndigits2 - 1];

		low = BASE[ndigits2], high = 10 * BASE[ndigits2] - 1;
		unsigned long long digits2 = 0;
		while (low <= high)
		{
			mid = low + (high - low) / 2;
			digits2 = digits + (mid - BASE[ndigits2] + 1) * ndigits2;
			if (digits2 >= num)
			{
				high = mid - 1;
			}
			else
			{
				low = mid + 1;
			}
		}

		digits2 = digits + (low - BASE[ndigits2] + 1) * ndigits2;
		while (digits2 > num)
		{
			low /= 10;
			digits2--;
		}

		printf("%d\n", low % 10);
	}

	return 0;  
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值