这道题我用的是两次二分,先求出在哪个组(1~1,1~2,1~3,。。。,1~99,。。。等都各自是一个组),然后再次二分,求出是这个组里面哪个数字。
思路是这位神牛是一样的:http://poj.org/showmessage?message_id=345696.但是代码相对于他的差了太多,二分都是自己手写的。lower_bound这个函数以后要多尝试用下。还有用公式求的:http://www.slyar.com/blog/poj-1019-cpp.html。我不觉得有什么可推广到别的题的可能。
thestoryofsnow | 1019 | Accepted | 156K | 0MS | C++ | 3526B |
/*
ID: thestor1
LANG: C++
TASK: poj1019
*/
#include <iostream>
#include <fstream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <limits>
#include <string>
#include <vector>
#include <list>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <algorithm>
#include <cassert>
using namespace std;
const int MAXNDIGITS = 5;
int main()
{
// 1 ~ 9
// 10 ~ 99
// 2147483647
// scanf();
std::vector<unsigned long long> totaldigits(MAXNDIGITS + 1, 0), NINEDIGITS(MAXNDIGITS + 1, 0), BASE(MAXNDIGITS + 2, 0), totaldigits2(MAXNDIGITS + 1, 0);
totaldigits[0] = 0;
NINEDIGITS[0] = 0;
BASE[1] = 1;
totaldigits2[0] = 0;
for (int ndigits = 1; ndigits <= MAXNDIGITS; ++ndigits)
{
totaldigits[ndigits] = totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (BASE[ndigits] * 10 - BASE[ndigits]) * ndigits) * (BASE[ndigits] * 10 - BASE[ndigits]) / 2;
// printf("[debug]%llu + %llu = %llu\n", totaldigits[ndigits - 1], (BASE[ndigits - 1] * 10 - BASE[ndigits - 1]) * ndigits, totaldigits[ndigits]);
BASE[ndigits + 1] = BASE[ndigits] * 10;
NINEDIGITS[ndigits] = NINEDIGITS[ndigits - 1] + (BASE[ndigits] * 10 - BASE[ndigits]) * ndigits;
totaldigits2[ndigits] = totaldigits2[ndigits - 1] + (10 * BASE[ndigits] - BASE[ndigits]) * ndigits;
}
// for (int ndigits = 0; ndigits <= MAXNDIGITS; ++ndigits)
// {
// printf("ndigits: %2d, totaldigits: %llu, NINEDIGITS: %llu\n", ndigits, totaldigits[ndigits], NINEDIGITS[ndigits]);
// }
int T;
scanf("%d", &T);
for (int t = 0; t < T; ++t)
{
int num;
scanf("%d", &num);
int ndigits = 1;
while (totaldigits[ndigits] < num && ndigits <= MAXNDIGITS)
{
ndigits++;
}
assert (ndigits <= MAXNDIGITS);
if (totaldigits[ndigits] == num)
{
printf("9\n");
continue;
}
int low = BASE[ndigits], high = 10 * BASE[ndigits] - 1, mid;
unsigned long long digits = 0;
while (low <= high)
{
mid = low + (high - low) / 2;
digits = totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (mid - BASE[ndigits] + 1) * ndigits) * (mid - BASE[ndigits] + 1) / 2;
if (digits >= num)
{
high = mid - 1;
}
else
{
low = mid + 1;
}
}
// assert (totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (low - BASE[ndigits] + 1) * ndigits) * (low - BASE[ndigits] + 1) / 2 >= digits);
// ndigits, low, digits
digits = totaldigits[ndigits - 1] + (NINEDIGITS[ndigits - 1] + ndigits + NINEDIGITS[ndigits - 1] + (low - 1 - BASE[ndigits] + 1) * ndigits) * (low - 1 - BASE[ndigits] + 1) / 2;
// digits -= (NINEDIGITS[ndigits - 1] + (low - BASE[ndigits] + 1) * ndigits);
// now it is [1, low]
int ndigits2 = 1;
while (digits + totaldigits2[ndigits2] < num && ndigits2 <= ndigits)
{
ndigits2++;
}
assert (ndigits2 <= ndigits);
digits += totaldigits2[ndigits2 - 1];
low = BASE[ndigits2], high = 10 * BASE[ndigits2] - 1;
unsigned long long digits2 = 0;
while (low <= high)
{
mid = low + (high - low) / 2;
digits2 = digits + (mid - BASE[ndigits2] + 1) * ndigits2;
if (digits2 >= num)
{
high = mid - 1;
}
else
{
low = mid + 1;
}
}
digits2 = digits + (low - BASE[ndigits2] + 1) * ndigits2;
while (digits2 > num)
{
low /= 10;
digits2--;
}
printf("%d\n", low % 10);
}
return 0;
}