动态规划之状态机

大盗阿福

给定一个长度为 N 的数组,数组中的第 i 个数字表示一个给定股票在第 i 天的价格。

设计一个算法来计算你所能获取的最大利润,你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。一次买入卖出合为一笔交易。

输入格式
第一行包含整数 N 和 k,表示数组的长度以及你可以完成的最大交易数量。

第二行包含 N 个不超过 10000 的正整数,表示完整的数组。

输出格式
输出一个整数,表示最大利润。

数据范围
1≤N≤105,
1≤k≤100
输入样例1:
3 2
2 4 1
输出样例1:
2
题目链接

题解:

1.线性解法

状态定义

dp[i]:为前i家店可以取得的最大收益

状态转移

1.如果抢劫第i家店则dp[i]=dp[i-2]+num[i],因为抢不了第i-1家店所以答案为前i-2家店可获得前加上第i家店的收益
2.如果不抢第i家店则dp[i]=dp[i-1]

二者取个max

#include<bits/stdc++.h>
using namespace std;
const int N=100005;
int num[N],dp[N];
int main()
{
    
    int t;
    cin>>t;
    int n;
    while(t--)
    {
        cin>>n;
        for(int i=1;i<=n;i++)
        scanf("%d",&num[i]);
        dp[1]=num[1];
        for(int i=2;i<=n;i++)
        dp[i]=max(dp[i-2]+num[i],dp[i-1]);
             
        cout<<dp[n]<<endl;
    }
}

2.状态机分析
1,dp[i][0]表示不抢劫第i家店可获得的最大金钱
2.dp[i][1]表示抢劫第i家店可获得的最大金钱

如果要偷第 i 家店铺,则第 i-1 店铺不能被偷: dp[i][1]=dp[i-1][0]+num[i];
对于第i天如果不抢有两种方式可以转移到该状态
如果不偷第 i 家店铺,则第 i-1 店铺可以被抢也可以不被抢,取个最大值: dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
在这里插入图片描述

#include<bits/stdc++.h>
using namespace std;
const int N=100005,inf=0x3f3f3f3f;
int num[N],dp[N][2];
int main()
{
    
    int t;
    cin>>t;
    int n;
    while(t--)
    {
        cin>>n;
        for(int i=1;i<=n;i++)
        scanf("%d",&num[i]);
       dp[0][1]=-inf;dp[0][0]=0;
       for(int i=1;i<=n;i++)
       {
           dp[i][0]=max(dp[i-1][0],dp[i-1][1]);
           dp[i][1]=dp[i-1][0]+num[i];
       }
       cout<<max(dp[n][0],dp[n][1])<<endl;
    }
}
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值