线性代数-方阵对角化及其应用

本文详细介绍了向量的内积、长度(范数)、单位向量、两向量夹角、正交与正交向量组的概念及其性质。此外,还探讨了正交矩阵、规范正交化过程,以及如何求解矩阵的特征值和特征向量。内容深入浅出,适合数学和计算机科学的学生及从业者学习。
摘要由CSDN通过智能技术生成

前置知识

1.向量的内积

对于 a = ( x 1 x 2 . . . x n ) a=\begin{pmatrix} x1 \\ x2 \\ ...\\ xn \end{pmatrix} a=x1x2...xn
b = ( y 1 y 2 . . . y n ) b=\begin{pmatrix} y1 \\ y2 \\ ...\\ yn \end{pmatrix} b=y1y2...yn
a与b的内积为[a,b] ,其中[a,b]= x 1 ∗ y 1 + x 2 ∗ y 2... + x n ∗ y n x1*y1+x2*y2...+xn*yn x1y1+x2y2...+xnyn

对于a与b的内积有以下一些基本变化

(1)交换律:[a,b]=[b,a];
(2)提取律:[ka,b]=k[a,b]
(3)拆分律:[a+b,y]=[a,y]+[b,y]
(4)0律:[a,a]>=0单且仅当a=0时等号成立

2.向量的长度(范数)

对于 a = ( x 1 x 2 . . . x n ) a=\begin{pmatrix} x1 \\ x2 \\ ...\\ xn \end{pmatrix} a=x1x2...xn
||a||称为向量a的长度,其中||a||= x 1 2 + x 2 2 + . . . + x n 2 \sqrt{x1^{2}+x2^{2}+...+xn^{2}} x12+x22+...+xn2

对于向量长度有以下一些基本性质

(1)非负性:||a||>=0;
(2)齐次性:||ka||=|k|||a||(k为常数)
(3)施瓦茨不等式 |[a,b]|<=||a|| *||b||
(4)三角不等式 ||a+b||<=||a||+||b||

单位向量

对于任意向量a,其单位向量为 a 0 = a ∣ ∣ a ∣ ∣ a_{0}=\frac{a}{||a||} a0=aa

两向量夹角

θ = a r c c o s [ a , b ] ∣ ∣ a ∣ ∣ . ∣ ∣ b ∣ ∣ \theta =arccos \frac{[a,b]}{||a||.||b||} θ=arccosa.b[a,b]

正交与正交向量组

1.正交:若两向量a与b内积为0([a,b]=0)则称两向量正交
2.正交向量组:向量组内向量两两正交则称之为正交向量组
3.标准正交向量组:正交向量组中每个向量都为单位向量则称该正交向量组为标准正交向量组
4.若两向量正交 ∣ ∣ a + b ∣ ∣ 2 = ∣ ∣ a ∣ ∣ 2 + ∣ ∣ b ∣ ∣ 2 ||a+b||^{2}=||a||^{2}+||b||^{2} a+b2=a2+b2
5.正交向量组是线性无关向量组

正交矩阵

如果n阶方阵 A T A = E A^{T}A=E ATA=E,即为 A − 1 = A T A^{-1}=A^{T} A1=AT则称A为正交矩阵

规范正交化

1.对于n阶矩阵规范正交化需要求出e1、e2…en
2. e 1 = b 1 ∣ ∣ b 1 ∣ ∣ e1=\frac{b1}{||b1||} e1=b1b1 e n = b n ∣ ∣ b n ∣ ∣ en=\frac{bn}{||bn||} en=bnbn
3.令b1=a1
4. b 2 = a 2 [ b 1 , a 2 ] [ b 1 , b 1 ] b2=a2\frac{[b1,a2]}{[b1,b1]} b2=a2[b1,b1][b1,a2]
5.对于[b1,a2]运算如下图,为两向量相乘和
6.对于bn有. b n = a n [ b 1 , a n ] [ b 1 , b 1 ] ∗ a n [ b 2 , a n ] [ b 2 , b 2 ] bn=an\frac{[b1,an]}{[b1,b1]}*an\frac{[b2,an]}{[b2,b2]} bn=an[b1,b1][b1,an]an[b2,b2][b2,an]
7.求出所有bi (1<=i<=n)后求出||bi||,其中bi为向量模长
在这里插入图片描述

求矩阵的特征值

1.寻找满足 ∣ A − λ E ∣ = 0 |A-\lambda E|=0 AλE=0其中 λ \lambda λ为矩阵特征值
2.代入式子得到矩阵,将矩阵化为半角矩阵,解得 λ \lambda λ,其中 λ \lambda λ取值看次方数,具体如图
在这里插入图片描述

求矩阵的特征向量

在这里插入图片描述

判断方阵是否与对角线相似

在这里插入图片描述

求方阵对应的对角阵A及其可逆变换矩阵

在这里插入图片描述
在这里插入图片描述

已知 P − 1 A P = A P^{-1}AP=A P1AP=A求关于A的复杂式子

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值