private val messages = new java.util.LinkedList[OutboxMessage]
/**
* Send a message. If there is no active connection, cache it and launch a new connection. If
* [[Outbox]] is stopped, the sender will be notified with a [[SparkException]].
*/
def send(message: OutboxMessage): Unit = {
val dropped = synchronized {
if (stopped) {
true
} else {
messages.add(message)
false
}
}
if (dropped) {
message.onFailure(new SparkException("Message is dropped because Outbox is stopped"))
} else {
drainOutbox()
}
}
消息发送
取出列表中的第一个元素 message = messages.poll()
调用消息发送 message.sendWith(_client)
/**
* Drain the message queue. If there is other draining thread, just exit. If the connection has
* not been established, launch a task in the `nettyEnv.clientConnectionExecutor` to setup the
* connection.
*/
private def drainOutbox(): Unit = {
var message: OutboxMessage = null
synchronized {
if (stopped) {
return
}
if (connectFuture != null) {
// We are connecting to the remote address, so just exit
return
}
if (client == null) {
// There is no connect task but client is null, so we need to launch the connect task.
launchConnectTask()
return
}
if (draining) {
// There is some thread draining, so just exit
return
}
message = messages.poll()
if (message == null) {
return
}
draining = true
}
while (true) {
try {
val _client = synchronized { client }
if (_client != null) {
message.sendWith(_client)
} else {
assert(stopped == true)
}
} catch {
case NonFatal(e) =>
handleNetworkFailure(e)
return
}
synchronized {
if (stopped) {
return
}
message = messages.poll()
if (message == null) {
draining = false
return
}
}
}
}
收件箱Inbox
对RpcMessage类型消息进行端点的 receiveAndReply 方法调用
对OneWayMessage类型消息进行端点的 receive方法调用
/**
* Process stored messages.
*/
def process(dispatcher: Dispatcher): Unit = {
var message: InboxMessage = null
inbox.synchronized {
if (!enableConcurrent && numActiveThreads != 0) {
return
}
message = messages.poll()
if (message != null) {
numActiveThreads += 1
} else {
return
}
}
while (true) {
safelyCall(endpoint) {
message match {
case RpcMessage(_sender, content, context) =>
try {
endpoint.receiveAndReply(context).applyOrElse[Any, Unit](content, { msg =>
throw new SparkException(s"Unsupported message $message from ${_sender}")
})
} catch {
case NonFatal(e) =>
context.sendFailure(e)
// Throw the exception -- this exception will be caught by the safelyCall function.
// The endpoint's onError function will be called.
throw e
}
case OneWayMessage(_sender, content) =>
endpoint.receive.applyOrElse[Any, Unit](content, { msg =>
throw new SparkException(s"Unsupported message $message from ${_sender}")
})
case OnStart =>
endpoint.onStart()
if (!endpoint.isInstanceOf[ThreadSafeRpcEndpoint]) {
inbox.synchronized {
if (!stopped) {
enableConcurrent = true
}
}
}
case OnStop =>
val activeThreads = inbox.synchronized { inbox.numActiveThreads }
assert(activeThreads == 1,
s"There should be only a single active thread but found $activeThreads threads.")
dispatcher.removeRpcEndpointRef(endpoint)
endpoint.onStop()
assert(isEmpty, "OnStop should be the last message")
case RemoteProcessConnected(remoteAddress) =>
endpoint.onConnected(remoteAddress)
case RemoteProcessDisconnected(remoteAddress) =>
endpoint.onDisconnected(remoteAddress)
case RemoteProcessConnectionError(cause, remoteAddress) =>
endpoint.onNetworkError(cause, remoteAddress)
}
}
inbox.synchronized {
// "enableConcurrent" will be set to false after `onStop` is called, so we should check it
// every time.
if (!enableConcurrent && numActiveThreads != 1) {
// If we are not the only one worker, exit
numActiveThreads -= 1
return
}
message = messages.poll()
if (message == null) {
numActiveThreads -= 1
return
}
}
}
}