回归分析 简单线性回归的参数评价与多元线性回归起步

简单线性回归的参数评价

fitted value 的区间估计

区间估计 Confidence Interval

考虑估计出来的参数\hat alpha, \hat beta,
α ^ + β ^ x n + 1 − α + β x n + 1 σ 1 n + ( x n + 1 − x ˉ ) 2 S x x ∼ N ( 0 , 1 ) \frac{\hat \alpha+\hat \beta x_{n+1}-\alpha+ \beta x_{n+1}}{\sigma\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}}\sim N(0,1) σn1+Sxx(xn+1xˉ)2 α^+β^xn+1α+βxn+1N(0,1)
考虑到分母中的sigma是未知的参数,我们用s/\sigma 它的无偏估计量s替换。左右同除以s/sigma,有
α ^ + β ^ x n + 1 − α + β x n + 1 s 1 n + ( x n + 1 − x ˉ ) 2 S x x ∼ t n − 2 \frac{\hat \alpha+\hat \beta x_{n+1}-\alpha+ \beta x_{n+1}}{s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}}\sim t_{n-2} sn1+Sxx(xn+1xˉ)2 α^+β^xn+1α+βxn+1tn2
这是因为(s/\sigma)^2 服从自由度为n-2的卡方分布。

由此给出区间估计
P ( α + β x n + 1 ∈ [ α ^ + β ^ x n + 1 ± t n − 2 ( α / 2 ) s 1 n + ( x n + 1 − x ˉ ) 2 S x x ] ) = 1 − α (1) P(\alpha+\beta x_{n+1}\in\bigg[\hat \alpha+\hat \beta x_{n+1} \pm t_{n-2}(\alpha/2)s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}} \bigg])=1-\alpha \tag 1 P(α+βxn+1[α^+β^xn+1±tn2(α/2)sn1+Sxx(xn+1xˉ)2 ])=1α(1)

好的,那么,如果我们有k个目标要估计呢?
P ( α + β x n + i ∈ [ α ^ + β ^ x n + 1 ± △ ] , i = 1 , . . . , k ) ≥ 1 − α P(\alpha+\beta x_{n+i}\in\bigg[\hat \alpha+\hat \beta x_{n+1}\pm\triangle \bigg],i=1,...,k)\ge 1-\alpha P(α+βxn+i[α^+β^xn+1±],i=1,...,k)1α
考虑写成事件交集的形式
P ( ⋂ i = 1 k α + β x n + i ∈ [ α ^ + β ^ x n + 1 ± △ ] ) ≥ 1 − α P(\bigcap_{i=1}^k \alpha+\beta x_{n+i}\in\bigg[\hat \alpha+\hat \beta x_{n+1}\pm\triangle \bigg])\ge 1-\alpha P(i=1kα+βxn+i[α^+β^xn+1±])1α
再写成差的绝对值的形式
P ( ⋂ i = 1 k ∣ α + β x n + i − α ^ + β ^ x n + 1 ∣ ≤ △ ) ≥ 1 − α P(\bigcap_{i=1}^k |\alpha+\beta x_{n+i}-\hat \alpha+\hat \beta x_{n+1}|\le\triangle )\ge 1-\alpha P(i=1kα+βxn+iα^+β^xn+1)1α
再写成1-补事件发生的概率的形式,对概率的并,可以放缩到子事件概率的求和
1 − P ( ⋃ i = 1 k ∣ α + β x n + i − α ^ + β ^ x n + 1 ∣ ≥ △ ) ≥ 1 − ∑ i = 1 k P ( ∣ α + β x n + i − α ^ + β ^ x n + 1 ∣ ≥ △ ) ≥ 1 − α 1-P(\bigcup_{i=1}^k |\alpha+\beta x_{n+i}-\hat \alpha+\hat \beta x_{n+1}|\ge\triangle )\ge 1-\sum_{i=1}^kP(|\alpha+\beta x_{n+i}-\hat \alpha+\hat \beta x_{n+1}|\ge\triangle )\ge 1-\alpha 1P(i=1kα+βxn+iα^+β^xn+1)1i=1kP(α+βxn+iα^+β^xn+1)1α

由此,我们希望使求和项不小于\alpha,即可得到想要的\delta.

不妨对每一项概率都提出要求:
P ( ∣ α + β x n + i − α ^ + β ^ x n + 1 ∣ ≥ △ ) = α k P(|\alpha+\beta x_{n+i}-\hat \alpha+\hat \beta x_{n+1}|\ge\triangle )=\frac{\alpha}{k} P(α+βxn+iα^+β^xn+1)=kα
考虑下式
P ( ∣ α + β x n + i − α ^ + β ^ x n + 1 ∣ s 1 n + ( x n + 1 − x ˉ ) 2 S x x ≥ △ s 1 n + ( x n + 1 − x ˉ ) 2 S x x ) = α k P\bigg(\frac{|\alpha+\beta x_{n+i}-\hat \alpha+\hat \beta x_{n+1}|}{s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}}\ge\frac{\triangle}{s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}} \bigg)=\frac{\alpha}{k} P(sn1+Sxx(xn+1xˉ)2 α+βxn+iα^+β^xn+1sn1+Sxx(xn+1xˉ)2 )=kα
不等式左边的随机变量服从自由度为n-2的t分布。

考虑
△ s 1 n + ( x n + 1 − x ˉ ) 2 S x x = t n − 2 ( α 2 k ) ∴ △ = s t n − 2 ( α 2 k ) 1 n + ( x n + 1 − x ˉ ) 2 S x x (2) \frac{\triangle}{s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}}=t_{n-2}(\frac{\alpha}{2k})\\ \therefore \triangle=st_{n-2}(\frac{\alpha}{2k})\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}\tag2 sn1+Sxx(xn+1xˉ)2 =tn2(2kα)=stn2(2kα)n1+Sxx(xn+1xˉ)2 (2)
与(1)对比可以知道,同时估计多个区间的话,区间的长度要大一些,这样才更有把握。
t n − 2 ( α 2 k ) > t n − 2 ( α 2 ) t_{n-2}(\frac{\alpha}{2k})>t_{n-2}(\frac{\alpha}{2}) tn2(2kα)>tn2(2α)

以上,是k为有限数的时候才能用,无限数的话,分位数就取到无穷大了。所以可以换一种研究方法,研究t分布的随机变量中最大的那一个。
P ( max ⁡ i ∣ ∣ α + β x n + i − α ^ + β ^ x n + 1 ∣ s 1 n + ( x n + 1 − x ˉ ) 2 S x x ∣ ≤ △ s 1 n + ( x n + 1 − x ˉ ) 2 S x x ) = 1 − α P\bigg(\max_i\bigg|\frac{|\alpha+\beta x_{n+i}-\hat \alpha+\hat \beta x_{n+1}|}{s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}}\bigg|\le\frac{\triangle}{s\sqrt{\frac{1}{n}+\frac{(x_{n+1}-\bar x)^2}{S_{xx}}}} \bigg)=1-\alpha P(imax sn1+Sxx(xn+1xˉ)2 α+βxn+iα^+β^xn+1 sn1+Sxx(xn+1xˉ)2 )=1α

假设检验 Hypothesis Test

先找点估计,再确定拒绝域
H 0 : β = β 0 , H 1 : β ≠ β 0 β ^ → β ⟶ H 0 β 0 I f    ∣ β ^ − β 0 ∣ > A , R e j e c t    H 0 H_0:\beta=\beta_0,H_1:\beta \ne \beta_0\\ \hat \beta\rightarrow\beta\stackrel{H_0}{\longrightarrow}\beta_0\\ If\; |\hat \beta -\beta_0|>A,Reject\; H_0 H0:β=β0,H1:β=β0β^βH0β0Ifβ^β0>A,RejectH0
显著水平:
α = P ( R e j e c t    H 0 ∣ H 0 ) = P ( ∣ β ^ − β 0 ∣ > A ∣ H 0 ) \alpha=P(Reject\;H_0|H_0)=P(|\hat \beta -\beta_0|>A|H_0) α=P(RejectH0H0)=P(β^β0>AH0)
怎样找A呢?
β ^ − β σ / S x x ∼ N ( 0 , 1 ) \frac{\hat \beta-\beta}{\sigma/\sqrt{S_{xx}}}\sim N(0,1) σ/Sxx β^βN(0,1)
上式除以s/\sigma

β ^ − β s / S x x ∼ t n − 2 \frac{\hat \beta-\beta}{s/\sqrt{S_{xx}}}\sim t_{n-2} s/Sxx β^βtn2

这是因为
s ∼ χ 2 ( n − 2 ) , β ^ ⊥  ⁣ ⁣ ⁣ ⊥ s s\sim \chi^2(n-2),\hat \beta\perp\!\!\!\perp s sχ2(n2),β^s
所以,我们可以进一步确定A
P ( ∣ β ^ − β 0 ∣ s / S x x > A s / S x x ∣ H 0 ) = α ∴ A = t n − 2 ( α / 2 ) s S x x P(\frac{|\hat \beta -\beta_0|}{s/\sqrt{S_{xx}}}>\frac{A}{s/\sqrt{S_{xx}}}|H_0)=\alpha\\ \therefore A=t_{n-2}(\alpha/2)\frac{s}{\sqrt{S_{xx}}} P(s/Sxx β^β0>s/Sxx AH0)=αA=tn2(α/2)Sxx s
这就是对\beta=0做的假设检验的拒绝域。

诸SS的分布

S S T = ∑ ( y i − y ˉ ) 2 = S Y Y , d f T = n − 1 SST=\sum(y_i-\bar y)^2=S_{YY},df_{T}=n-1\\ SST=(yiyˉ)2=SYY,dfT=n1

S S R = ∑ ( y ^ i − y ˉ ) 2 y ˉ = y ^ ˉ , S S R = β ^ S x x , d f R = 1 SSR=\sum(\hat y_i-\bar y)^2\\ \bar y=\bar{ \hat{y}},SSR=\hat \beta S_{xx},df_{R}=1 SSR=(y^iyˉ)2yˉ=y^ˉ,SSR=β^Sxx,dfR=1

S S E = ∑ ( y ^ i − y i ) 2 ∼ σ 2 χ 2 ( n − 2 ) , d f E = n − 2 SSE=\sum(\hat y_i-y_i)^2 \sim \sigma^2 \chi^2(n-2),df_{E}=n-2 SSE=(y^iyi)2σ2χ2(n2),dfE=n2


d f T = d f E + d f R r 2 = △ S S R S S T S S E n − 2 = s 2 ⊥  ⁣ ⁣ ⁣ ⊥ β ^ = S S R S x x df_{T}=df_{E}+df_{R}\\ r^2\stackrel{\triangle}{=}\frac{SSR}{SST}\\ \frac{SSE}{n-2}=s^2\perp\!\!\!\perp \hat \beta=\frac{SSR}{S_{xx}} dfT=dfE+dfRr2=SSTSSRn2SSE=s2β^=SxxSSR

现在,用SS来检验H0。Under H0:\beta=0
y i = α + β x i + ϵ i = α + ϵ i y ˉ = α + ϵ ˉ , y i − y ˉ = ϵ i − ϵ ˉ ∵ ϵ i ∼ i . i . d . N ( 0 , σ 2 ) ∴ ϵ ˉ ∼ i . i . d . N ( 0 , σ 2 n ) 1 n − 1 ∑ ( ϵ i − ϵ ˉ ) 2 ∼ σ 2 χ 2 ( n − 1 ) n − 1 y_i=\alpha+\beta x_i+\epsilon_i=\alpha+\epsilon_i\\ \bar y=\alpha+\bar \epsilon, y_i-\bar y=\epsilon_i-\bar \epsilon\\ \because \epsilon_i\stackrel{i.i.d.}{\sim}N(0,\sigma^2)\\ \therefore \bar \epsilon\stackrel{i.i.d.}{\sim}N(0,\frac{\sigma^2}{n})\\ \frac{1}{n-1}\sum(\epsilon_i-\bar \epsilon)^2\sim \frac{\sigma^2\chi^2(n-1)}{n-1} yi=α+βxi+ϵi=α+ϵiyˉ=α+ϵˉ,yiyˉ=ϵiϵˉϵii.i.d.N(0,σ2)ϵˉi.i.d.N(0,nσ2)n11(ϵiϵˉ)2n1σ2χ2(n1)
最后两个分布是相互独立的,这一结论可以通过构造特殊的正交矩阵来证明。
S S T = ∑ ( y i − y ˉ ) 2 = ∑ ( ϵ i − ϵ ˉ ) 2 = σ 2 χ 2 ( n − 1 ) SST=\sum(y_i-\bar y)^2=\sum(\epsilon_i-\bar \epsilon)^2=\sigma^2 \chi^2(n-1) SST=(yiyˉ)2=(ϵiϵˉ)2=σ2χ2(n1)
还可以将\bar \epsilon写成矩阵乘积的形式
( ϵ − ϵ ˉ ) = ( I n − 1 n 1 1 T ) ϵ w h e r e    1 = ( 1 , . . . , 1 ) T (\epsilon-\bar\epsilon)=(I_n-\frac{1}{n}\mathbf1\mathbf1^T)\epsilon\\ where\; \mathbf1=(1,...,1)^T (ϵϵˉ)=(Inn111T)ϵwhere1=(1,...,1)T
所以,SST也可以写成如下的形式:
S S T = ϵ T ( I n − 1 n 1 1 T ) T ( I n − 1 n 1 1 T ) ϵ = ϵ T ( I n − 1 n 1 1 T ) ϵ SST=\epsilon^T(I_n-\frac{1}{n}\mathbf1\mathbf1^T)^T(I_n-\frac{1}{n}\mathbf1\mathbf1^T)\epsilon\\ =\epsilon^T(I_n-\frac{1}{n}\mathbf1\mathbf1^T)\epsilon SST=ϵT(Inn111T)T(Inn111T)ϵ=ϵT(Inn111T)ϵ
若二次型中间的矩阵对称、幂等,则此二次型即为卡方分布,其自由度为矩阵的迹。

显然,对称幂等已经有了,
t r ( A B ) = t r ( B A ) t r ( 1 1 T ) = t r ( 1 T 1 ) = n t r ( I n − 1 n 1 1 T ) = n − 1 tr(AB)=tr(BA)\\ tr(\mathbf1\mathbf1^T)=tr(\mathbf1^T\mathbf1)=n\\ tr(I_n-\frac{1}{n}\mathbf1\mathbf1^T)=n-1 tr(AB)=tr(BA)tr(11T)=tr(1T1)=ntr(Inn111T)=n1
所以
S S T = σ 2 χ 2 ( n − 1 ) SST=\sigma^2 \chi^2(n-1) SST=σ2χ2(n1)

接下来,再考察SSR
S S R = β ^ 2 S x x = ( S x y S x x ) 2 S x x = S x y 2 S x x ∼ σ 2 χ 2 ( 1 ) SSR=\hat \beta^2 S_{xx}=\bigg(\frac{S_{xy}}{S_{xx}}\bigg)^2S_{xx}=\frac{S_{xy}^2}{S_{xx}}\sim\sigma^2 \chi^2(1) SSR=β^2Sxx=(SxxSxy)2Sxx=SxxSxy2σ2χ2(1)
证明是容易的
( ∑ ( x i − x ˉ ) ( y i − y ˉ ) S x x ) 2 = ( ∑ ( x i − x ˉ ) ( ϵ i − ϵ ˉ ) S x x ) 2 = ( ∑ ( x i − x ˉ ) ϵ i S x x ) 2 \bigg(\frac{\sum(x_i-\bar x)(y_i-\bar y)}{\sqrt{S_{xx}}}\bigg)^2=\bigg(\frac{\sum(x_i-\bar x)(\epsilon_i-\bar\epsilon)}{\sqrt{S_{xx}}}\bigg)^2\\ =\bigg(\frac{\sum(x_i-\bar x)\epsilon_i}{\sqrt{S_{xx}}}\bigg)^2 (Sxx (xixˉ)(yiyˉ))2=(Sxx (xixˉ)(ϵiϵˉ))2=(Sxx (xixˉ)ϵi)2
括号内的部分服从期望为0的正态分布,只需要考察其方差即可。
V a r ( ∑ ( x i − x ˉ ) ϵ i S x x ) = 1 S x x ∑ ( x i − x ˉ ) 2 V a r ( ϵ i ) = S x x S x x σ 2 = σ 2 Var\bigg(\frac{\sum(x_i-\bar x)\epsilon_i}{\sqrt{S_{xx}}}\bigg)=\frac{1}{S_{xx}}\sum(x_i-\bar x)^2 Var(\epsilon_i)=\frac{S_{xx}}{S_{xx}}\sigma^2=\sigma^2 Var(Sxx (xixˉ)ϵi)=Sxx1(xixˉ)2Var(ϵi)=SxxSxxσ2=σ2
由此,
S S R = σ 2 χ 2 ( 1 ) SSR=\sigma^2 \chi^2(1) SSR=σ2χ2(1)
因为SSR与SSE是独立的,
S S T = S S R + S S E SST=SSR+SSE SST=SSR+SSE
所以它们的分布的自由度也有类似的和数关系
n − 1 = 1 + n − 2 n-1=1+n-2 n1=1+n2
现在,考虑拒绝域
α = P ( 拒绝 H 0 ∣ H 0 ) = P ( S S R > A ∣ H 0 ) \alpha=P(拒绝H_0|H_0)=P(SSR>A|H_0) α=P(拒绝H0H0)=P(SSR>AH0)
尽管我们已经知道SSR的分布,但是分布的参数\sigma2是未知的,所以不能直接写出分位数。为了消除未知参数的影响,我们对不等式左右两边同除以s2
α = P ( S S R s 2 > A s 2 ∣ H 0 ) \alpha=P\bigg(\frac{SSR}{s^2}>\frac{A}{s^2}\bigg|H_0\bigg) α=P(s2SSR>s2A H0)
SSR=MSR 均方残差

s^2=MSE 均方误差

定义F=MSR/MSE

就有
F = σ 2 χ 2 ( 1 ) σ 2 χ 2 ( n − 2 ) / ( n − 2 ) F=\frac{\sigma^2 \chi^2(1)}{\sigma^2 \chi^2(n-2)/(n-2)} F=σ2χ2(n2)/(n2)σ2χ2(1)
由于分子分母是独立的,F服从参数为1,n-2的F分布。

所以,
A = F 1 , n − 2 ( α ) s 2 A=F_{1,n-2}(\alpha)s^2 A=F1,n2(α)s2

多元线性回归

Y = X β + ϵ Y=X\beta+\epsilon Y=+ϵ

X被称为Data Matrix或Design Matrix。beta是参数向量,可以从最小二乘,BLUE,MLE三个层面加以考察。
Y ∈ R n × 1 ϵ ∈ R n × 1 X ∈ R n × ( k + 1 ) β ∈ R ( k + 1 ) × 1 Y\in \mathbb{R}^{n\times 1}\\ \epsilon \in \mathbb{R}^{n\times 1}\\ X\in \mathbb{R}^{n\times (k+1)}\\ \beta\in \mathbb{R}^{(k+1)\times 1} YRn×1ϵRn×1XRn×(k+1)βR(k+1)×1
再假设
C o v ( Y ∣ X ) = C o v ( ϵ ) = σ 2 I n Cov(Y|X)=Cov(\epsilon )=\sigma^2 I_n Cov(YX)=Cov(ϵ)=σ2In
即,各个观测之间是不相关的。

Y ^ = X β ^ \hat Y=X\hat \beta Y^=Xβ^
被称为Regression Plane (回归平面)。

对于最小二乘的方法,求导,解出导数为0的方程,得到
β ^ = ( X T X ) − 1 X T Y E ( β ^ ) = E ( ( X T X ) − 1 X T Y ) = ( X T X ) − 1 X T X β = β \hat \beta=(X^TX)^{-1}X^TY\\ E(\hat \beta)=E((X^TX)^{-1}X^TY)=(X^TX)^{-1}X^TX\beta=\beta\\ β^=(XTX)1XTYE(β^)=E((XTX)1XTY)=(XTX)1XT=β
所以,此\hat \beta是无偏估计量。
C o v ( β ^ ) = C o v ( ( X T X ) − 1 X T Y ) = ( X T X ) − 1 X T σ 2 X I n ( X T X ) − 1 = σ 2 ( X T X ) − 1 Cov(\hat \beta)=Cov((X^TX)^{-1}X^TY)=(X^TX)^{-1}X^T\sigma^2 X I_n(X^TX)^{-1}\\ =\sigma^2(X^TX)^{-1} Cov(β^)=Cov((XTX)1XTY)=(XTX)1XTσ2XIn(XTX)1=σ2(XTX)1
如果代入k=1,容易看出\hat \alpha, \hat \beta的方差。

此处,除了解释变量X_i以外,我们还会补充一个截距项。
x 0 = 1 n , Y ^ ∈ s p a n { 1 n , x 1 , . . . , x k } Y ^ = H Y = X ( X T X ) − 1 Y x_0=\mathbb1_n,\hat Y\in span\{\mathbb1_n,x_1,...,x_k\}\\ \hat Y=HY=X(X^TX)^{-1}Y x0=1n,Y^span{1n,x1,...,xk}Y^=HY=X(XTX)1Y
将H称为Hat Matrix或Projection Matrix。它是由X的特征向量组成的矩阵。

投影阵的性质:

  1. 对称
  2. 幂等
  3. 与单位阵的差也是幂等
  4. 迹为目标空间的维数

t r ( H ) = t r ( X ( X T X ) − 1 X T ) = t r ( X T X ( X T X ) − 1 ) = t r ( I K + 1 ) = k + 1 tr(H)=tr(X(X^TX)^{-1}X^T)\\ =tr(X^TX(X^TX)^{-1})\\ =tr(I_{K+1})=k+1 tr(H)=tr(X(XTX)1XT)=tr(XTX(XTX)1)=tr(IK+1)=k+1

  1. 投影X,等于没有改变。

( I − H ) X = 0 (I-H)X=0 (IH)X=0

从5还可以有一个结论:当上式取第一列时,有
H 1 n = 1 n H\mathbb1_n=1_n H1n=1n
这个式子还是有点重要的。

BLUE(可以说明就是LSE)

对于LSE估计
b = ( X T X ) − 1 X T Y b=(X^TX)^{-1}X^TY b=(XTX)1XTY
考虑任意一个其它的线性无偏估计:
β ^ = ( ( X T X ) − 1 X T + A ) Y E [ β ^ ] = ( ( X T X ) − 1 X T + A ) X β = β + A X β \hat \beta=((X^TX)^{-1}X^T+A)Y\\ E[\hat \beta]=((X^TX)^{-1}X^T+A)X\beta=\beta+AX\beta β^=((XTX)1XT+A)YE[β^]=((XTX)1XT+A)=β+A
由此,
A X = 0 AX=0 AX=0

考察协方差矩阵
C o v ( β ^ ) = [ ( X T X ) − 1 X T + A ] σ 2 I n [ X ( X T X ) − 1 + A T ] = σ 2 ( ( X T X ) − 1 + A A T ) Cov(\hat \beta)=[(X^TX)^{-1}X^T+A]\sigma^2I_n [X (X^TX)^{-1}+A^T]\\ =\sigma^2((X^TX)^{-1}+AA^T) Cov(β^)=[(XTX)1XT+A]σ2In[X(XTX)1+AT]=σ2((XTX)1+AAT
因为AA^T是非负定矩阵,所以
t r ( C o v ( β ^ ) ) ≥ σ 2 ( ( X T X ) − 1 ) = t r ( C o v ( b ) ) tr(Cov(\hat \beta))\ge \sigma^2((X^TX)^{-1})=tr(Cov(b)) tr(Cov(β^))σ2((XTX)1)=tr(Cov(b))
等号成立当且仅当A=0。

所以,LSE=BLUE。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值