TensorFlow之使用Google的图像识别网络Inception-v3进行图像识别

下载及使用Inception-v3模型

import tensorflow as tf
import os
import  tarfile
import requests

#模型下载地址
inception_pretrain_model_url='http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'

#模型存放地址
inception_pretrain_model_dir="inception_model"

#获取文件名,以及文件路径
filename=inception_pretrain_model_url.split('/')[-1]
filepath=os.path.join(inception_pretrain_model_dir,filename)

#下载模型
if  not os._exists(filepath):
    print("download:",filename)
    r=requests.get(inception_pretrain_model_url,stream=True)
    with open(filepath,'wb') as f:
        for chunk in r.iter_content(chunk_size=1024):
            if chunk:
                f.write(chunk)
print("finish:",filename)

#解压文件
tarfile.open(filepath,'r:gz').extractall(inception_pretrain_model_dir)

#模型结构存放文件
log_dir='inception_log'
if not os.path.exists(log_dir):
    os.makedirs(log_dir)

#classify_image_graph_def.pb为google训练好的模型
inception_graph_def_file=os.path.join(inception_pretrain_model_dir,'classify_image_graph_def.pb')
with tf.Session() as sess:
    with tf.gfile.FastGFile(inception_graph_def_file,'rb') as f:
        graph_def=tf.GraphDef()
        graph_def.ParseFromString(f.read())
        tf.import_graph_def(graph_def,name='')
    #保存图结构
    writer=tf.summary.FileWriter(log_dir,sess.graph)
    writer.close()

应用Inception-v3识别图像

import tensorflow as tf
import os
import numpy as np
import re
from PIL import Image
import matplotlib.pyplot as plt

class NodeLookup(object):
    def __init__(self):
        label_lookup_path='inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'
        uid_lookup_path='inception_model/imagenet_synset_to_human_label_map'
        self.node_lookup=self.load(label_lookup_path,uid_lookup_path)

    def load(self,label_lookup_path,uid_lookup_path):
        #加载分类字符串n*********对应分类名称的文件
        proto_as_ascii_lines=tf.gfile.GFile(uid_lookup_path).readlines()
        uid_to_human={}
        #一行一行读取数据
        for line in proto_as_ascii_lines:
            #去掉换行符
            line=line.strip('\n')
            #按照'\t'分割
            prased_items=line.split('\t')
            #获取分类编号
            uid=prased_items[0]
            #获取分类名称
            human_string=prased_items[1]
            #保存编号字符串n********与分类名称映射关系
            uid_to_human[uid]=human_string

        #加载分类字符串n**********对应分类编号1-1000的文件
        proto_as_ascii=tf.gfile.GFile(label_lookup_path).readlines()
        node_id_to_uid={}
        for line in proto_as_ascii:
            target_class={}
            if line.startswith(' target_class:'):
                #获取分类编号1-1000
                target_class=int(line.split(': ')[1])
            if line.startswith(' target_class_string:'):
                #获取编号字符串n********
                target_class_string=line.split(': ')[1]
                #保存分类编号1-1000与编号字符串n*******映射关系
                node_id_to_uid[target_class]=target_class_string[1:-2]

        #建立分类编号1-1000对应分类名称的映射关系
        node_id_to_name={}
        for key,val in node_id_to_uid.items():
            #获取分类名称
            name=uid_to_human[val]
            #建立分类编号1-1000到分类名称的映射关系
            node_id_to_name[key]=name
        return node_id_to_name

    #传入分类编号1-1000返回分类名称
    def id_to_string(self,node_id):
        if node_id not in self.node_lookup:
            return ''
        return self.node_lookup[node_id]

#创建一个图来存放google训练好的模型
with tf.gfile.GFile('inception_model/classify_image_graph_def.pb','rb') as f:
    graph_def=tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def,name='')

with tf.Session() as sess:
    softmax_tensor=sess.graph.get_tensor_by_name('softmax:0')
    #遍历目录
    for root,dirs,files in os.walk('images/'):
        for file in files:
            #载入图片
            image_data=tf.gfile.FastGFile(os.path.join(root,file),'rb').read()
            predictions=sess.run(softmax_tensor,{'DecodeJpeg/contents:0':image_data})#图片格式是jpg格式
            predictions=np.squeeze(predictions)#把结果转为1维数据

            #打印图片路径及名称
            image_path=os.path.join(root,file)
            print(image_path)
            #显示图片
            img=Image.open(image_path)
            plt.imshow(img)
            plt.axis('off')
            plt.show()

            #排序
            top_k=predictions.argsort()[-5:][::-1]
            node_lookup=NodeLookup()
            for node_id in top_k:
                #获取分类名称
                human_string=node_lookup.id_to_string(node_id)
                #获取该分类的置信度
                score=predictions[node_id]
                print('%s(score=%.5f)'%(human_string,score))
            print()

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值