LeetCode数据库SQL题目记录(难度:困难)

这是一篇关于LeetCode中涉及数据库操作的难题解析,包括部门工资前三高的员工、行程和用户信息、员工薪水中位数、数字频率查询中位数、体育馆人流量、平均工资比较、用户行为分析等多个SQL查询案例,涵盖了复杂的数据分析和处理技巧。

难度:困难

目录

185. 部门工资前三高的所有员工

262. 行程和用户

569. 员工薪水中位数

571. 给定数字的频率查询中位数

601. 体育馆的人流量

615. 平均工资:部门与公司比较

618. 学生地理信息报告

1097. 游戏玩法分析 V

1127. 用户购买平台

1159. 市场分析 II

1194. 锦标赛优胜者

1225. 报告系统状态的连续日期


185. 部门工资前三高的所有员工

Employee 表包含所有员工信息,每个员工有其对应的工号 Id,姓名 Name,工资 Salary 和部门编号 DepartmentId 。

+----+-------+--------+--------------+
| Id | Name  | Salary | DepartmentId |
+----+-------+--------+--------------+
| 1  | Joe   | 85000  | 1            |
| 2  | Henry | 80000  | 2            |
| 3  | Sam   | 60000  | 2            |
| 4  | Max   | 90000  | 1            |
| 5  | Janet | 69000  | 1            |
| 6  | Randy | 85000  | 1            |
| 7  | Will  | 70000  | 1            |
+----+-------+--------+--------------+
Department 表包含公司所有部门的信息。

+----+----------+
| Id | Name     |
+----+----------+
| 1  | IT       |
| 2  | Sales    |
+----+----------+
编写一个 SQL 查询,找出每个部门获得前三高工资的所有员工。例如,根据上述给定的表,查询结果应返回:

+------------+----------+--------+
| Department | Employee | Salary |
+------------+----------+--------+
| IT         | Max      | 90000  |
| IT         | Randy    | 85000  |
| IT         | Joe      | 85000  |
| IT         | Will     | 70000  |
| Sales      | Henry    | 80000  |
| Sales      | Sam      | 60000  |
+------------+----------+--------+
解释:

IT 部门中,Max 获得了最高的工资,Randy 和 Joe 都拿到了第二高的工资,Will 的工资排第三。销售部门(Sales)只有两名员工,Henry 的工资最高,Sam 的工资排第二。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/department-top-three-salaries
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select b.name Department,a.name Employee,a.Salary   
from 
(select *,
       dense_rank() over(partition by DepartmentId order by Salary desc) cnt
from Employee) a,Department b
where a.cnt <= 3
  and a.DepartmentId = b.id

262. 行程和用户

表:Trips
+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| Id          | int      |
| Client_Id   | int      |
| Driver_Id   | int      |
| City_Id     | int      |
| Status      | enum     |
| Request_at  | date     |     
+-------------+----------+
Id 是这张表的主键。
这张表中存所有出租车的行程信息。每段行程有唯一 Id ,其中 Client_Id 和 Driver_Id 是 Users 表中 Users_Id 的外键。
Status 是一个表示行程状态的枚举类型,枚举成员为(‘completed’, ‘cancelled_by_driver’, ‘cancelled_by_client’) 。
 

表:Users

+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| Users_Id    | int      |
| Banned      | enum     |
| Role        | enum     |
+-------------+----------+
Users_Id 是这张表的主键。
这张表中存所有用户,每个用户都有一个唯一的 Users_Id ,Role 是一个表示用户身份的枚举类型,枚举成员为 (‘client’, ‘driver’, ‘partner’) 。
Banned 是一个表示用户是否被禁止的枚举类型,枚举成员为 (‘Yes’, ‘No’) 。
 

写一段 SQL 语句查出 "2013-10-01" 至 "2013-10-03" 期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 Banned 为 No 的用户,禁止用户即 Banned 为 Yes 的用户。

取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。

返回结果表中的数据可以按任意顺序组织。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。

查询结果格式如下例所示:

Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| Id | Client_Id | Driver_Id | City_Id | Status              | Request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1  | 1         | 10        | 1       | completed           | 2013-10-01 |
| 2  | 2         | 11        | 1       | cancelled_by_driver | 2013-10-01 |
| 3  | 3         | 12        | 6       | completed           | 2013-10-01 |
| 4  | 4         | 13        | 6       | cancelled_by_client | 2013-10-01 |
| 5  | 1         | 10        | 1       | completed           | 2013-10-02 |
| 6  | 2         | 11        | 6       | completed           | 2013-10-02 |
| 7  | 3         | 12        | 6       | completed           | 2013-10-02 |
| 8  | 2         | 12        | 12      | completed           | 2013-10-03 |
| 9  | 3         | 10        | 12      | completed           | 2013-10-03 |
| 10 | 4         | 13        | 12      | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+

Users 表:
+----------+--------+--------+
| Users_Id | Banned | Role   |
+----------+--------+--------+
| 1        | No     | client |
| 2        | Yes    | client |
| 3        | No     | client |
| 4        | No     | client |
| 10       | No     | driver |
| 11       | No     | driver |
| 12       | No     | driver |
| 13       | No     | driver |
+----------+--------+--------+

Result 表:
+------------+-------------------+
| Day        | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33              |
| 2013-10-02 | 0.00              |
| 2013-10-03 | 0.50              |
+------------+-------------------+

2013-10-01:
  - 共有 4 条请求,其中 2 条取消。
  - 然而,Id=2 的请求是由禁止用户(User_Id=2)发出的,所以计算时应当忽略它。
  - 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。
  - 取消率为 (1 / 3) = 0.33
2013-10-02:
  - 共有 3 条请求,其中 0 条取消。
  - 然而,Id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。
  - 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。
  - 取消率为 (0 / 2) = 0.00
2013-10-03:
  - 共有 3 条请求,其中 1 条取消。
  - 然而,Id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。
  - 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。
  - 取消率为 (1 / 2) = 0.50

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/trips-and-users
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

# Write your MySQL query statement below
select a.Request_at Day,
       round(sum(case when a.Status <> 'completed' then 1 else 0 end)/count(*),2) 'Cancellation Rate'
from Trips a 
where not exists(select * from Users b where b.Banned = 'Yes' and b.Role = 'client' and a.Client_Id = b.Users_Id)
  and not exists(select * from Users b where b.Banned = 'Yes' and b.Role = 'driver' and a.Driver_Id = b.Users_Id)
  and Request_at between '2013-10-01' and '2013-10-03'
group by a.Request_at 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值