R语言数据处理——基础篇 data.frame基本操作

这篇博客介绍了R语言中data.frame的基本操作,包括创建、数据访问、条件筛选、删除以及数据格式转换。通过实例讲解了如何从csv、excel文件创建data.frame,以及如何进行数据筛选和删除。此外,还讨论了如何使用tidyr::pivot_longer进行数据格式转换,解决列名包含'X'、'V'的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言数据处理——基础篇 data.frame基本操作

打算用两篇博客来记录下平时使用R语言进行数据处理、绘图遇见的一些问题。第一篇首先介绍下使用data.frame处理数据的常用操作,第二篇总结下使用ggplot2绘图时常用的一些操作。每篇博客在基础介绍完后总结下自己遇到过的问题,不定时补充。

data.frame的创建

可以从文件和构造函数创建data.frame。

  • 可以使用以下几个函数从csv、excel文件创建data.frame。
函数名 包含库
read.csv -
read.csv2 -
read_excel readxl
read_xls readxl
read_xlsx readxl
read.csv(file, header = TRUE, sep = ",", quote = "\"", 
	dec = ".", fill = TRUE, comment.char = "", ...)

read.csv2(file, header = TRUE, sep = ";", quote = "\"", 
    dec = ",", fill = TRUE, comment.char = "", ...)  

主要参数包括
file:文件路径。注意使用相对路径时,是相对工作目录,工作目录绝对路径使用getwd()查看,以及使用setwd()设置。
header:是否将文件第一行当作行名,默认为TRUE。选FALSE时依然会读取第一行,只不过会自动生成默认行名,使用rowname()<-更改即可。
sep:csv文件的分隔符,默认为",",常见的分隔符包括","、" “、”;"。
quote:字符的表示方式,默认用" “包围引号。
dec:小数点的表示方式,默认为”.";
fill:当各列变量数不一样时是否填补,默认为TRUE。注意补充的类型与读取文件后,程序判定的列变量类型有关,如果列变量是数字会用NA,如果是字符则会用"",不会用NULL填补也不能用is.null()检查。
comment.char:指定读取文件中的注释字符,注释字符及其后不会被读取。

library(readxl)

read_excel(path, sheet = NULL, range = NULL, col_names = TRUE, 
    col_types = NULL, na = "", trim_ws = TRUE, skip = 0, 
    n_max = Inf, guess_max = min(1000, n_max), progress = readxl_progress(), 
    .name_repair = "unique") 

read_xls(path, sheet = NULL, range = NULL, col_names = TRUE, 
    col_types = NULL, na = "", trim_ws = TRUE, skip = 0
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值