R语言data.frame基本操作

R语言里面的data.frame就是数据库里面的table,R语言的分析,建模大部分都是基于data.frame数据结构,由rows和columns组成。data.frame每一个column会存储同样的数据类型,可以是numeric, factor, character.

  1. 创建一个data.frame
    R用data.frame() function创建一个data.frame
data.frame(..., row.names = NULL, check.rows = FALSE,
           check.names = TRUE, fix.empty.names = TRUE,
           stringsAsFactors = default.stringsAsFactors())

# create data.frame
studentAges <- c(23, 34, 34, 89, 90, 340)
studentNames <- c("Bob","Henry","Lily","LiMing","Rose","Jack")
studentDF <- data.frame(studentAges, studentNames)
studentDF

rownames(studentDF)
colnames(studentDF)

rownames和colnames可以用来看行名和列名。
在这里插入图片描述

  1. data.frame 增加一列
# add a column to data.frame
studentHeight <- c(150, 165, 180, 155, 167, 186)
studentDF <- cbind(studentDF, studentHeight)
studentDF
  1. data.frame 增加一行
# add a row to data.frame
newStudent <- list(34, "Winters", "190")
studentDF <- rbind(studentDF, newStudent)
studentDF
  1. 查看data.frame的结构,str
# check data.frame structure with str
str(studentDF)

在这里插入图片描述
5. 获取data.frame部分数据,subset

# this will get the row 1 and column 2 element
studentDF[1,2]
# this will get the whole firt row
studentDF[1,]
# this will get the whole second column
studentDF[,2]
# you also can get several rows or columns together
studentDF[2:4,]

  1. data.frame里面查找符合条件的rows
# find a row in data.frame, in this, to find height>170
# studentDF[,3] > 170 this will give a true, false vector
validStudentDF <- studentDF[studentDF[,3] > 170,]
`data.frame`是R语言中最常用的结构之一,用于组织数据集。它类似于表格或数据库的行和列形式,主要用于统计分析、数据可视化等任务。以下是关于`data.frame`的一些基本特性: ### 数据帧的主要特点: 1. **双维结构**:`data.frame`是一个二维表型的数据结构,每一行代表一条观测记录,而每列表示一个变量。 2. **异构支持**:`data.frame`可以容纳不同类型的数据,并将它们放在不同的列中,例如数字、字符串、日期时间或其他类型的向量。 3. **命名属性**:每个变量(列)都有名称,这使得引用特定变量变得简单明了,无需像数组那样通过索引来访问。 4. **列顺序自由**:虽然有名称,但列的物理顺序并不是固定的,可以根据需要重新排列。 5. **灵活的操作**:支持多种内置函数和操作,如合并、筛选、排序、分组聚合等,方便数据分析流程。 6. **兼容性好**:几乎所有的R包都支持数据帧作为输入和输出,使得数据处理和分析非常便捷。 ### 创建`data.frame`的基本语法: ```r df <- data.frame( column1 = c(1, 2, 3), column2 = c("apple", "banana", "cherry"), row.names = c(1L, 2L, 3L) ) # 或者使用现有的数据向量直接创建数据框 df <- data.frame(column1 = c(1, 2, 3), column2 = c("a", "b", "c")) ``` ### `data.frame`的常用操作: - **获取信息**:`str()`查看数据框架的结构;`dim()`查看行列数。 - **选择元素**:`df$column_name`选取某一列;`df[row_index, ]`或`df[, col_index]`分别选取指定行或列。 - **修改元素**:`df$column_name <- new_values` - **连接数据**:使用`merge()`函数与其他数据帧连接。 - **过滤数据**:`subset(df, condition)`基于条件筛选数据。 ### 相关问题: 1. 怎样在R中对`data.frame`进行排序? 2. R中的`data.frame`如何进行合并? 3. `data.frame`如何处理缺失值(NA)? 这样的问答可以帮助理解和应用`data.frame`这一强大的工具在R编程中的实际场景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值