word2vec (四) 动手训练一个词向量空间

本文介绍如何使用gensim库训练word2vec模型。首先,语料需要转化为可迭代的句子列表,对于大规模语料,可以实现一次加载一个句子。接着展示训练过程,调整关键参数如词向量维度、学习率、窗口大小等。训练完成后,模型可保存以供后续使用。通过示例展示了训练结果,与特定词相关的相似词,表明模型能捕捉到词之间的语义关系。
摘要由CSDN通过智能技术生成

开源的word2vec工具已经有不少了,可以直接使用google开源的C版本,也可以用gensim版本的。这里我就用gensim的word2vec来训练一个词向量空间。

训练语料输入

gensim word2vec的API接受一系列的句子作为输入语料,其中每一个句子是一系列词构成的list。如下所示

import gensim

sentences = [['ios','android'],['apple','google','xiaomi']]

model = gensim.models.Word2Vec(sentences)

将语料都转换为一个python的list作为输入是很方便,但是如果输入的语料特别大,大到内存都装不下,就不能采用这种方式。gensim的API并不要求sentences必须是list对象,只要输入的sentences是iterable的就行,那我们只要一次载入一个句子,训练完之后再将其丢弃,内存就不会因为语料过大而不够了。我们通过下面的代码就可以生成一个iterator。事先已经将训练语料分词&#

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值