开源的word2vec工具已经有不少了,可以直接使用google开源的C版本,也可以用gensim版本的。这里我就用gensim的word2vec来训练一个词向量空间。
训练语料输入
gensim word2vec的API接受一系列的句子作为输入语料,其中每一个句子是一系列词构成的list。如下所示
import gensim
sentences = [['ios','android'],['apple','google','xiaomi']]
model = gensim.models.Word2Vec(sentences)
将语料都转换为一个python的list作为输入是很方便,但是如果输入的语料特别大,大到内存都装不下,就不能采用这种方式。gensim的API并不要求sentences必须是list对象,只要输入的sentences是iterable的就行,那我们只要一次载入一个句子,训练完之后再将其丢弃,内存就不会因为语料过大而不够了。我们通过下面的代码就可以生成一个iterator。事先已经将训练语料分词&#