-
题目描述:
-
给定a0,a1,以及an=p*a(n-1) + q*a(n-2)中的p,q。这里n >= 2。 求第k个数对10000的模。
-
输入:
-
输入包括5个整数:a0、a1、p、q、k。
-
输出:
-
第k个数a(k)对10000的模。
-
样例输入:
-
20 1 1 14 5
-
样例输出:
-
8359
思路:
直接一步一步的递推肯定是要超时的。对这种求第n个数的递推题,有logn的解法。
基本思想是a(n)由a(n/2)得到,逐次循环。
由an=p*a(n-1) + q*a(n-2)
可以得到an=p2*a(n-2) + q2*a(n-4)
其中 p2 = (p*p+2*q), q2 = -q*q
这种思想是典型二分法,此题重点是学到了一种解题思想。
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(void)
{
int p, q, p2, q2, k;
long long a0, a1, a2, a3;
while (scanf("%lld%lld%d%d%d", &a0, &a1, &p, &q, &k) != EOF)
{
if (k == 0)
{
printf("%lld\n", a0);
continue;
}
a0 %= 10000;
a1 %= 10000;
p %= 10000;
q %= 10000;
while (k>1)
{
a2 = p*a1+q*a0;
while (a2<0)
a2 += 1000000000;
a2 %= 10000;
if (k%2 == 1)
{
a3 = p*a2+q*a1;
while (a3<0)
a3 += 1000000000;
a3 %= 10000;
a0 = a1;
a1 = a3;
}
else
a1 = a2;
p2 = (p*p+2*q)%10000;
q2 = -q*q;
while (q2<0)
q2 += 1000000000;
q2 %= 10000;
p = p2;
q = q2;
k /= 2;
}
printf("%lld\n", a1);
}
return 0;
}
/**************************************************************
Problem: 1081
User: liangrx06
Language: C
Result: Accepted
Time:10 ms
Memory:912 kb
****************************************************************/
#include<stdio.h>
#define MOD 10000
long long a0,a1,p,q,k;
void matrixpow(long long *data,long long k)
{
long long t1,t2,t3,t4;
long long d1,d2,d3,d4;
d1 = p;
d2 = q;
d3 = 1;
d4 = 0;
if(k == 1 || k == 0)
return;
matrixpow(data,k/2);
t1 = (data[0]*data[0]+data[1]*data[2])%MOD;
t2 = (data[0]*data[1]+data[1]*data[3])%MOD;
t3 = (data[0]*data[2]+data[2]*data[3])%MOD;
t4 = (data[1]*data[2]+data[3]*data[3])%MOD;
data[0] = t1;
data[1] = t2;
data[2] = t3;
data[3] = t4;
if(k&1)
{
t1 = (data[0]*d1+data[1]*d3)%MOD;
t2 = (data[0]*d2+data[1]*d4)%MOD;
t3 = (data[2]*d1+data[3]*d3)%MOD;
t4 = (data[2]*d2+data[3]*d4)%MOD;
data[0] = t1;
data[1] = t2;
data[2] = t3;
data[3] = t4;
}
}
void main()
{
long long data[4];
long long res;
while(scanf("%lld%lld%lld%lld%lld",&a0,&a1,&p,&q,&k)!=EOF)
{
data[0] = p;
data[1] = q;
data[2] = 1;
data[3] = 0;
matrixpow(data,k-2);
if(k == 0)
res = a0%MOD;
else
{
if(k == 1)
res = a1%MOD;
else
{
if(k>2)
res = (data[0]*p*a1+a1*q*data[2]+a0*p*data[1]+a0*q*data[3])%MOD;
else
res = (a1*p+a0*q)%MOD;
}
}
printf("%lld\n",res);
}
}