小狐狸

EE转机器学习(深度学习)欢迎一起交流学习~~

精益软件度量之读书笔记(一)度量和组织目标

作者就职于咨询公司,因此书中的内容更加偏向于理论框架 度量 度量的理解 度量的重点应该从“控制”转变为“改进”:精益的一个核心理念是持续改进。在理念上,我们希望把度量的重心从“控制”转向“改进”。虽然控制和改进都是对系统采取的干预性措施,“控制”给人造成的心理暗示是围绕着静态目标而行动;而“改进”...

2019-07-09 17:24:36

阅读数 14

评论数 0

【T】大数据统计学基础:描述性统计

引入:统计学是应用,数理统计是其理论基础。 数据的集中趋势程度 平均数:平均水平 中位数:中等水平 众数:一般水平 数据的离散程度 方差:数据离中心(平均数)越远越离散 标准差:避免单位平方引起的度量问题 极差=最大值-最小值,衡量离散程度存在弊端 图表 用上...

2019-07-04 17:34:39

阅读数 2

评论数 0

A*算法原理概述

这里是目录路径规划A*算法原理路线规划理论概述Dijkstra算法最佳优先搜索算法A*算法理论概述 路径规划A*算法原理 路线规划理论概述 移动一个物体直观上很容易的,但是物品的路线规划是复杂的。如下图3-1所示,物体最初位于地图的底端,并尝试向顶部移动。物在扫描的区域中,没有任何东西显示物体不能...

2019-05-06 19:57:27

阅读数 167

评论数 0

工科转机器学习的一些心路历程

没有目录哦,大家就当看一个日记好了,后面我会整理一下我转行学习的资料和过程还有面试的公司和题目。 到今天为止,我的秋招算基本结束了,我不算是大神,一路走来磕磕碰碰,只能说不辜负自己的努力,一共7个月,转行到找到工作。从9月份找工作到现在一路走过很多坎坷,有过笑容,有过哭泣,到最后纠结去哪里工作,感...

2018-11-13 21:08:09

阅读数 417

评论数 2

【P】子网掩码计算

IP地址为140.123.0.0的地址是B类地址,若要切割为10个子网,而且都要连接上Internet,请问子网掩码是? B类地址中,后16位为主机地址,255.255.0.0,二进制为11111111 11111111 00000000 00000000 要想切割成10个子网,至少要向主机位借4...

2018-09-18 09:33:44

阅读数 289

评论数 0

【A】机器学习 过拟合与正则化

过拟合问题 预测房价的模型: 第一张图对该数据做线性回归,可以获得拟合数据的这样一条直线,实际上这并不是一个很好的模型。很明显,随着房子面积增大,住房价格的变化趋于稳定或者说越往右越平缓。因此线性回归并没有很好拟合训练数据。我们把此类情况称为欠拟合(underfitting),或者叫作叫做...

2018-09-12 18:16:02

阅读数 69

评论数 1

【P】python基础 Pycharm显示DataFrame全部列数据

在Anaconda中notebook可以显示全部的数据,但是在pycharm中,使用print(dataframe),不能显示dataframe的全部数据,中间的数据用省略号表示。 在pycharm中显示全部数据解决方法,输入下面代码: import pandas as pd pd.se...

2018-09-11 23:28:42

阅读数 6141

评论数 2

【P】python编程基础 Python是如何进行内存管理

Python是如何进行内存管理的? 从三个方面来说,一对象的引用计数机制,二垃圾回收机制,三内存池机制 第一、对象的引用计数机制 python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。 引用计数增加的情况: 1,一个对象分配一个新名称 2,将其放入一个...

2018-09-11 17:43:25

阅读数 58

评论数 0

【D】深度学习 CNN结构作用探讨

平安的面试官问到CNN的池化层有什么作用?为什么CNN对于图像处理和文本很有优势?我的回答池化层可以缩小尺寸加快训练速度,还可以减少过拟合的风险。CNN用于图像方面有优势主要是卷积层,池化层的存在,然后又扯了一些全局共享,瞎扯一通。明显不是很好的答案。面试官提到了一些局部和整体的概念,我明显不是很...

2018-09-09 20:09:15

阅读数 216

评论数 1

【E】机器学习 机器学习中的归一化的方法讨论

归一化方法: 看到一篇文章收益很大,机器学习中的归一化方法,我也总结一下,归一化的目的是除了让数据在一定的范围之内,还有量纲的考虑(计算协方差) 线性函数归一化(Min-Max scaling) 线性函数将原始数据线性化的方法映射到[0 1]的范围,对原始数据的等比例缩放: 0均值标准...

2018-09-07 16:28:44

阅读数 167

评论数 0

【E】机器学习 机器学习概率统计相关知识

目录: 概率公式:全概率 贝叶斯公式 定理:大数定理 中心极限定理 极大释然估计 常见分布的参数估计 协方差与协方差矩阵 概率公式 定理 大数定理: 当样本的数量越来越多,那么它的期望值,也就越接近平均值。当大量重复某一实验时,最后的频率无限接近事件概率。 中心极...

2018-09-07 15:32:51

阅读数 125

评论数 1

【E】机器学习 机器学习模型特征工程

一、什么是特征工程 本质上来说,呈现给算法的数据应该能拥有基本数据的相关结构或属性。当你做特征工程时,其实是将数据属性转换为数据特征的过程,属性代表了数据的所有维度,在数据建模时,如果对原始数据的所有属性进行学习,并不能很好的找到数据的潜在趋势,而通过特征工程对你的数据进行预处理的话,你的算法...

2018-09-07 09:18:17

阅读数 75

评论数 0

【SQL】SQL数据库基础语句学习(一)

Tensorflow基础操作 import tensorflow as tf a = 3 #创建变量 w = tf.Variable([[0.5,1.0]]) x = tf.Variable([[2.0],[1.0]]) #变量操作 y = tf.matmul(w,x) #matm...

2018-09-06 11:07:36

阅读数 1679

评论数 1

【A】python数据分析与机器学习实战 如何评估机器学习模型(评估模型性能)

为什么需要评估模型 评估训练出的模型是准确预测的关键。训练出的模型是建立在总数据的子集上的,其被称为训练数据,训练结束后该模型将被用于预测其它新数据。 通过训练集产生的模型,利用测试数据来进行模型效果的评估,评估结果以模型评估报告的形式呈现,在报告中通过AUC值、模型准确率、模型召回率等一系列...

2018-09-05 09:29:35

阅读数 330

评论数 0

【A-003】python数据分析与机器学习实战 Python科学计算库 Pandas数据分析处理库(四)DataFrame数据结构

pandas数据结构:DataFrame 引入: 在上一节中已经介绍过了Series对象,Series对象可以理解为由一列索引和一列值,共两列数据组成的结构。而DataFrame就是由一列索引和多列值组成的结构,其中,在DataFrame中的每一列都是一个Series对象。 行选择 不...

2018-09-04 13:40:01

阅读数 106

评论数 0

【A-003】python数据分析与机器学习实战 Python科学计算库 Pandas数据分析处理库(三)Series数据结构

Pandas的数据结构 Pandas的Series是Numpy的数组(array)的升级版,Numpy只能使用整数来所索引,但是Series还可以使用字符串来索引,还能使用混合的数据类型和NaN来表示缺失值,一个Series对象可以包含以下几种数据类型: float – 表示字符串数值 ...

2018-09-04 12:54:39

阅读数 78

评论数 0

【A-003】python数据分析与机器学习实战 Python科学计算库 Pandas数据分析处理库(二)

目录: 处理缺失数据 制作透视图 删除含空数据的行和列 多行索引 使用apply函数 本节要处理的数据来自于泰坦尼克号的生存者名单,它的数据如下: PassengerId Survived Pclass ... Fare Cabin Embarked 0...

2018-09-04 12:25:06

阅读数 51

评论数 0

【A-003】python数据分析与机器学习实战 Python科学计算库 Pandas数据分析处理库(一)

目录: 读取数据 索引 选择数据 简单运算 引入: Pandas数据库可以用于数据处理,样本的预处理方面,以numpy为基础,Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的...

2018-09-04 10:55:10

阅读数 82

评论数 0

【A】python数据分析与机器学习实战 项目开始前,怎么根据实际项目选择合适的机器学习模型

Tensorflow基础操作 import tensorflow as tf a = 3 #创建变量 w = tf.Variable([[0.5,1.0]]) x = tf.Variable([[2.0],[1.0]]) #变量操作 y = tf.matmul(w,x) #ma...

2018-09-03 20:35:49

阅读数 185

评论数 0

【A-017】 python数据分析与机器学习实战 支持向量机原理(一) SVM Support Vector Machine

支持向量机SVM 非常经典的二分类问题 面试中必问。支持向量机 SVM 2012年前很火,2012年之后被神经网络冲击到,SVM 核心思路是通过构造分割面将数据进行分割。 引入: Support Vector Machine 要解决的问题:什么样的决策边界才是最好的呢?寻求最好决策边界 ...

2018-09-03 18:57:53

阅读数 46

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭