Lucene 倒排原理

 


Lucene
的索引排序是使用了倒排序原理。

该结构及相应的生成算法如下:

设有两篇文章1
2
文章1的内容为:
Tom lives in Guangzhou,I live in Guangzhou too.
文章2的内容为:
He once lived in Shanghai.

1.
由于lucene是基于关键词索引和查询的,首先我们要取得这两篇文章的关键词,通常我们需要如下处理措施


a.
我们现在有的是文章内容,即一个字符串,我们先要找出字符串中的所有单词,即分词。英文单词由于用空格分隔,比较好处理。中文单词间是连在一起的需要特殊的分词处理。


b.
文章中的”in”, “once” “too”等词没有什么实际意义,中文中的”“等字通常也无具体含义, 这些不代表概念的词可以过滤掉,这个也就是在《Lucene详细分析》中所讲的
StopTokens

c.
用户通常希望查“He”时能把含“he”“HE”的文章也找出来,所以所有单词需要统一大小写。


d.
用户通常希望查“live”时能把含“lives”“lived”的文章也找出来,所以需要把“lives”“lived”还原成
“live”

e.
文章中的标点符号通常不表示某种概念,也可以过滤掉,lucene中以上措施由Analyzer类完成,经过上面处理后
:

文章1的所有关键词为:
[tom] [live] [guangzhou] [i] [live] [guangzhou]
文章2的所有关键词为:
[he] [live] [shanghai]

2.
有了关键词后,我们就可以建立倒排索引了


上面的对应关系是:文章号文章中所有关键词。倒排索引把这个关系倒过来,变成:关键词拥有该关键词的所有文章号。文章12经过倒排后变成

<!--[if !supportLineBreakNewLine]-->


关键词

文章号


guangzhou
1

he
2

i
1

live
1,2

shanghai
2

tom
1




通常仅知道关键词在哪些文章中出现还不够,我们还需要知道关键词在文章中出现次数和出现的位置,通常有两种位置:a)字符位置,即记录该词是文章中第几个字符(优点是关键词亮显时定位快);b)关键词位置,即记录该词是文章中第几个关键词(优点是节约索引空间、词组(phase)查询快),lucene中记录的就是这种位置。

加上出现频率出现位置信息后,我们的索引结构变为:




关键词

文章号[出现频率
]
出现位置


guangzhou
1[2]
3
6

he
2[1]
1

i
1[1]
4

live
1[2],2[1]
2
5
2

shanghai
2[1]
3

tom
1[1]
1




live 这行为例我们说明一下该结构:live在文章1中出现了2次,文章2中出现了一次,它的出现位置为“2,5,2”这表示什么呢?我们需要结合文章号和出现频率来分析,文章1中出现了2次,那么“2,5”就表示live在文章1中出现的两个位置,文章2中出现了一次,剩下的“2”就表示live是文章2中第 2个关键字。

以上就是lucene索引结构中最核心的部分。我们注意到关键字是按字符顺序排列的(lucene没有使用B树结构),因此lucene可以用二元搜索算法快速定位关键词。

实现时 lucene将上面三列分别作为词典文件(Term Dictionary)、频率文件(frequencies)、位置文件 (positions)保存。其中词典文件不仅保存有每个关键词,还保留了指向频率文件和位置文件的指针,通过指针可以找到该关键字的频率信息和位置信息。


Lucene
中使用了field的概念,用于表达信息所在位置(如标题中,文章中,url中),在建索引中,该field信息也记录在词典文件中,每个关键词都有一个field信息(因为每个关键字一定属于一个或多个field)

为了减小索引文件的大小,Lucene对索引还使用了压缩技术。首先,对词典文件中的关键词进行了压缩,关键词压缩为<前缀长度,后缀>,例如:当前词为阿拉伯语,上一个词为阿拉伯,那么阿拉伯语压缩为<3,语>。其次大量用到的是对数字的压缩,数字只保存与上一个值的差值(这样可以减小数字的长度,进而减少保存该数字需要的字节数)。例如当前文章号是16389(不压缩要用3个字节保存),上一文章号是16382,压缩后保存7(只用一个字节)。

下面我们可以通过对该索引的查询来解释一下为什么要建立索引。

假设要查询单词 “live”lucene先对词典二元查找、找到该词,通过指向频率文件的指针读出所有文章号,然后返回结果。词典通常非常小,因而,整个过程的时间是毫秒级的。

而用普通的顺序匹配算法,不建索引,而是对所有文章的内容进行字符串匹配,这个过程将会相当缓慢,当文章数目很大时,时间往往是无法忍受的。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值