求有向图强连通分量个数

本文介绍了有向图的强连通分量的概念,并详细讲解了Kosaraju算法和Tarjan算法这两种求解强连通分量的方法,包括它们的步骤和实现细节,帮助理解如何在图论中找到强连通子图。
摘要由CSDN通过智能技术生成

https://www.byvoid.com/blog/scc-tarjan/

强连通图(Strongly Connected Graph)是指一个有向图(Directed Graph)中任意两点v1、v2间存在v1到v2的路径(path)及v2到v1的路径的图。

在一个有向图中,其强连通子图(大到不能再大,就是相当于扩张到最大,如强连通子图的强连通子图不算个数)就是他的强连通分量,现在,我们要做的就是求出一个有向图中,他的强连通分量的个数。

1、Kosaraju算法 [邻接矩阵]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值