通过FineBI结合python爬虫对亚马逊竞品监控分析,跨境如何出海?从竞品分析开始。
口水话时间、好多年没有更新博客了,翻了一下上一次更新都是在好几年前了,由于工作变化,这几年都在做跨境的数据分析,在技术栈和分析方法论里面也有了很多的更新,下面给大家简单的分享一下如果做跨境的竞品监控分析,举了一个简单的demo,感兴趣的小伙伴可以一起讨论学习。
1、调研阶段
1.1、明确监控需求
- 首先把我们需要监控亚马逊上的类目或者ASIN整理好,特别是类目知名品牌,建议在每个梯度下面选取数据。
- 关键指标监控包括:价格、销量、用户评价数量及平均分、产品排名,关键词以及关联流量等。
箭头这些都是我们需要监控的指标 - 监控目的:及时掌握竞品的运营动作,在活动,广告、关键词上面的调整,去分析竞品的历史趋势以及流量结构,合理的调整自己的产品数据
1.2、技术可行性研究
- 亚马逊网站结构复杂,数据通过AJAX加载,需要模拟浏览器行为进行数据抓取。
- 亚马逊有强大的反爬虫机制,需要利用代理IP、设置合理的抓取频率等策略应对。
- 如果不想直接去爬亚马逊网站,可以使用某些第三方平台比如国内比较出名的那几个,通过第三方平台去爬数据会省很多的事,不过很多都是需要付费账号有cookies认证,如果非会员数据抓取会被限制。
1.3、了解FineBI功能
- 对于使用过FineBI的小伙伴都知道,它支持多种数据源的连接,有丰富的数据分析功能,比如聚合、过滤、趋势等
- FineBI的数据可视化功能强大,可以生成直观的图表和报告,满足我们的分析需求,另外帆软正版还是挺贵的动辄几个W,我是使用PJ版的,有需要也可以找我。
2、数据准备
2.1、确定数据抓取策略
- 每日抓取一次数据,抓取时段选择在亚马逊流量较低的时段,以减少对网站的干扰,如果是抓取第三方平台的数据,建议在设置晚上或者凌晨自动跑,第三方平台可以多选择几个爬取,可以不同的板块去爬不同平台。
- 需要抓取的网页包括商品详情页、用户评价页,关键词页面,流量来源页面等。
2.2、选择爬虫工具
- 选择Scrapy框架进行网页数据的抓取,因其具有高效的爬取能力和良好的扩展性。
- 利用Selenium库模拟浏览器行为,处理AJAX加载的数据和cookies数据。
- 也可以直接用request库编写脚本,这样更灵活方便。
2.3、数据预处理
- 对抓取的数据进行清洗,去除无效和重复的数据记录。
- 将价格、销量等字段转换为数值类型,便于后续分析。
下面图示是编写的脚本文件爬取对应板块的数据:
2.4、构建数据存储方案
- 选择MySQL数据库存储抓取的数据,设计合理的表结构。
3、脚本编写与数据入库
3.1编写爬虫脚本
- 编写Python爬虫脚本,定义爬取规则和解析函数,我这边是使用多线程进行数据爬取,由于数据量太大,单线程数据太慢了,开30个线程直接拉满。
- 利用Selenium处理自动登录获取第三方平台的cookies数据,由于某些网站的cookies过期时间为一天,我们需要每天定时模拟登录获取cookies进行入库,方便后续程序调用。
3.2脚本优化与反爬虫策略
- 使用代理IP池,定期更换IP地址,避免被反爬封禁。
- 设置合理的抓取间隔和超时时间,确保爬虫的稳定运行。
3.3数据入库与备份
- 将抓取的数据实时导入到MySQL数据库中,确保数据的时效性。
- 定期备份数据库,制定恢复策略,以防数据丢失或损坏。
4、使用FineBI进行分析
在上面写了一推的代码和脚本,其实价值不高,有了数据之后,我们将数据使用起来,发掘数据背后的价值,才是我们做数据分析的关键所在,所以我们会使用FineBI,使用这个好处就是,做好的看板运营实时能够看到最新的数据,以及打通各个数据板块之间的联系,打破数据孤岛的问题存在。
4.1数据连接与导入
- 使用FineBI的数据连接功能,连接到MySQL数据库。
从这里设置好这五个参数就OK了
- 导入所需的数据表之后,对数据表进行字段映射和整合。
我们可以在表的这里将数据关键建立好,当然也可以在分析主题里面的数据模型里面建立好数据关系
建立关系方法一:
建立关系方法二:
4.2数据分析过程
- 利用FineBI的数据处理功能,将数据进行清洗。
- 对价格、销量等关键指标进行聚合分析,生成趋势图表。
- 对比关联流量进行数据追踪,监控来源的变化情况。
4.3数据可视化与报告生成
- 使用FineBI的数据可视化工具,生成直观的图表和报告。
- 展示价格趋势图、销量对比图、用户评价分布图等。
- 导出报告为PDF或Excel格式,便于分享和决策。
4.4制定竞品监控策略
- 根据分析结果,制定针对性的竞品监控策略。
- 如发现竞品价格异常波动,及时调整自身定价策略。
- 根据用户评价分析,优化产品功能和用户体验。
总结
在跨境这个行业,竞品的分析是非常重要的,选品初期如果没有大量的数据支持,我们很难做出决策,好的工具以及优秀的数据处理能力是你脱颖而出的关键,以上是一个简单的案例,感兴趣的小伙伴可以点赞留言,对代码感兴趣的可以点赞关注,下期将更新如何做市场分析以及选择策略。