1、原理阐述
适用于关联表中有小表的情形;
可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度
2、实现示例
–先在mapper类中预先定义好小表,进行join
–引入实际场景中的解决方案:一次加载数据库或者用
第一步:定义mapJoin
public class Map extends Mapper<LongWritable, Text,Text,Text> {
HashMap<String, String> map = new HashMap<>();
String line="";
@Override
protected void setup(Context context) throws IOException, InterruptedException {
URI[] cacheFiles = DistributedCache.getCacheFiles(context.getConfiguration());
FileSystem fileSystem = FileSystem.get(cacheFiles[0], context.getConfiguration());
FSDataInputStream open = fileSystem.open(new Path(cacheFiles[0]));
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(open));
while ((line=bufferedReader.readLine())!=null){
String[] split = line.split(",");
map.put(split[0],split[1]+"\t"+split[2]+"\t"+split[3]);
}
bufferedReader.close();
fileSystem.close();
}
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] split = value.toString().split(",");
String s = map.get(split[2]);
context.write(new Text(split[2]),new Text(s+"\t"+split[0]+"\t"+split[1]+"\t"+split[3]));
}
}
第二步:定义程序运行main方法
public class Driver {
public static void main(String[] args)throws Exception {
Configuration configuration = new Configuration();
//注意,这里的缓存文件的添加,只能将缓存文件放到hdfs文件系统当中
DistributedCache.addCacheFile(new URI("hdfs:// IP :8020/目录"),configuration);
Job job = Job.getInstance(configuration, "方法名");
job.setJarByClass(Driver.class);
job.setMapperClass(Map.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
FileInputFormat.addInputPath(job,new Path("加载路径"));
FileOutputFormat.setOutputPath(job,new Path("写入路径"));
boolean b = job.waitForCompletion(true);
System.exit(b?0:1);
}
}