python编程之tf.reduce_mean()的用法解析,教给你的知识永不退还

本文详细解析了Python深度学习库TensorFlow中tf.reduce_mean()函数的使用,该函数用于计算张量在指定轴上的平均值,可用于降维操作。内容包括参数解释,如input_tensor、axis、keep_dims等,并举例说明不同参数设置下的应用。
摘要由CSDN通过智能技术生成

tf.reduce_mean()的功能如下

计算张量tensor沿着指定的数轴(tensor的某一维度)上的平均值,主要用作降维或者计算tensor(图像)的平均值。

tf.reduce_mean(
    input_tensor, 
    axis=None, 
    keep_dims=False, 
    name=None, 
    reduction_indices=None
)

参数:

  • input_tensor: 输入的待降维的tensor
  • axis: 指定的轴,如果不指定,则计算所有元素的均值
  • keep_dims:是否降维度,默认False。设置为True,输出的结果保持输入tensor的形状,设置为False,输出结果会降低维度
  • name: 操作的名称
  • reduction_indices:在以前版本中用来指定轴,已弃用

     不指定某个方向,计算的就是所有值的平均值

 1代表x轴方向降维度;

 

0代表y轴方向降维、

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值