苍蓝儿
码龄11年
  • 611,643
    被访问
  • 115
    原创
  • 20,563
    排名
  • 90
    粉丝
关注
提问 私信

个人简介:蓝天依旧,明眸如初

  • 加入CSDN时间: 2011-11-05
博客简介:

zywvvd的博客

查看详细资料
  • 5
    领奖
    总分 1,297 当月 68
个人成就
  • 获得307次点赞
  • 内容获得196次评论
  • 获得1,051次收藏
创作历程
  • 7篇
    2022年
  • 37篇
    2021年
  • 48篇
    2020年
  • 35篇
    2019年
  • 30篇
    2017年
成就勋章
TA的专栏
  • 数学
    4篇
  • 概率论
    11篇
  • 机器学习
    9篇
  • docker
    4篇
  • pytorch
    5篇
  • IDE
    9篇
  • git
    4篇
  • 最优化方法
    4篇
  • 线性代数
    3篇
  • 故障排除
    5篇
  • web
    1篇
  • markdown
    2篇
  • Hexo
    3篇
  • Typora
  • 操作系统
    1篇
  • 深度学习
    32篇
  • Python
    61篇
  • Windows
    10篇
  • Linux
    25篇
  • TensorFlow
    20篇
  • 嵌入式
    6篇
  • QT
    3篇
  • Keras
    7篇
  • Torch
    2篇
  • 程序安装
    3篇
兴趣领域 设置
  • 人工智能
    tensorflowpytorch迁移学习分类
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Python - mmap 共享内存

在程序运行过程中,可能遇到需要进程间或不同平台的语言之间进行信息交互,存在硬盘是一种解决方案但是速度太慢。python的mmap库提供了共享内存的实践方案可以完成信息在内存间交互。简介共享内存内存共享是两个不同的进程共享内存的意思:同一块物理内存被映射到两个进程的各自的进程地址空间。这个物理内存已经被规定了大小(大小一定要比实际写入的东东大)以及名称。当需要写入时,找到内存名称,然后写入内存,等需要读取时候, 首先要知道你要读取多大(因为物理内存比你要读取的东东大,全部读取的话会读到一些“空”.
原创
发布博客 2022.02.03 ·
781 阅读 ·
0 点赞 ·
0 评论

Windows10 配置 Nvidia 驱动与 Cuda 环境搭建

title: Windows10 配置 Nvidia 驱动与 Cuda 环境搭建mathjax: falsedate: 2021-04-17 12:50:27tags: [Environment, Cuda]categories: [Environment, Cuda]Windows 配置GPU加速编程环境可能问题比Linux多一些,本文记录配置过程。环境需求当前配置操作系统:Windows 10显卡型号:Nvidia GeForce GTX 960M当前驱动:391.25.
原创
发布博客 2022.01.30 ·
1462 阅读 ·
1 点赞 ·
0 评论

调用 Mathpix AIP 实现每月1000次免费识别

Mathpix 是优秀的img2latax工具,对于普通用户来说每月有50-100次免费机会,对于需求量大的用户无法满足需求。有一种方法是调用Mathpix官方的API,每月1000次免费机会。概述Mathpix是一款跨平台(Windows、macOS、Linux)的 OCR 工具,它能够识别复杂的数学公式,并将其转换为 LaTeX 语法。LaTeX 是一个十分强大切流行的排版系统,除了能编写数学公式,还能非常完整的撰写学术论文,并且被国际各大机构接受,但一直以入门难著称。Mathpix 能.
原创
发布博客 2022.01.29 ·
1642 阅读 ·
0 点赞 ·
4 评论

概率论基础 - 9 - 中心极限定理

中心极限定理(Central Limit Theorem,CTL),是指概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。。概述定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。 ——百度百科中心极限定理(CLT)指出,如果样.
原创
发布博客 2022.01.28 ·
564 阅读 ·
0 点赞 ·
0 评论

VSCode 配置 C++ 运行环境

本文记录使用 vscode 配置c++编程环境的流程。环境准备项目内容操作系统Windows 10软件安装VS code官网:https://code.visualstudio.com/安装gcc编译器下载链接:MinGW-w64 - for 32 and 64 bit Windows选最新版本中的x86_64-posix-seh安装解压压缩包将目录中的bin添加到环境变量验证在cmd中输入命令> gcc -vU.
原创
发布博客 2022.01.28 ·
45 阅读 ·
0 点赞 ·
0 评论

docker - Error Got permission denied & response from daemon Unknown runtime specified nvidia 解决方案

Docker 在使用过程中docker: Error response from daemon: Unknown runtime specified nvidia.问题的解决方案。docker: Got permission denied while trying to connect to the Docker daemon socket这是因为用户没有加入到docker组中,因此将自己的用户加入到docker的用户组sudo usermod -a -G docker $USERdoc.
原创
发布博客 2022.01.28 ·
1011 阅读 ·
0 点赞 ·
0 评论

Nvidia 显卡 Failed to initialize NVML Driver/library version

https://www.zywvvd.com/notes/system/linux/driver/driver-library-version-mismatch/driver-library-version-mismatch/本文记录错误 Failed to initialize NVML: Driver/library version mismatch 错误解决方案。问题复现$ nvidia-smi -->Failed to initialize NVML: Driver/libr
原创
发布博客 2022.01.28 ·
68 阅读 ·
0 点赞 ·
0 评论

线性代数 - 1 - 基础知识

线性代数,基础知识,温故知新。定义向量:向量默认为列向量:{% raw %}x→=(x1,x2,⋯ ,xn)T=[x1x2⋮xn]\overrightarrow{\mathbf{x}}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T}=\left[\begin{array}{c}x_{1} \\x_{2} \\\vdots \\x_{n}\end{array}\right]x=(x1​,x2​,⋯,xn​)T=⎣⎢⎢⎢⎡​x1​x.
原创
发布博客 2022.01.19 ·
0 阅读 ·
0 点赞 ·
0 评论

docker - 占满根目录空间的解决方案

Docker 默认会占用根目录的空间,时间久了就会吧根目录占满,本文记录解决方案。问题复现不知不觉根目录已经没有空间,ls 的补全都会报错。cannot create temp file for here-document: No space left on devic可以看到 /已经没有空间了$ df -hFilesystem Size Used Avail Use% Mounted onudev .
原创
发布博客 2021.08.21 ·
442 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 8 - 大数定理

概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。依概率收敛定义设Y1,Y2,…,Yn,…Y_1,Y_2, \dots ,Y_n, \dotsY1​,Y2​,…,Yn​,… 是一个随机变量序列,aaa是一个常数。若对于任意正数$\varepsilon $有 :{%raw%}lim⁡n→∞P{∣Yn−a∣≤ε}=1\lim _{n \rightarrow \infty} P\left\{\l.
原创
发布博客 2021.08.21 ·
89 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 7 - 特征函数

特征函数是随机变量的分布的不同表示形式。概述一般而言,对于随机变量XXX的分布,大家习惯用概率密度函数来描述,虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。特征函数的本质是概率密度函数的泰勒展开每一个级数表示原始概率密度函数的一个特征如果两个分布的所有特征都相同,那我们就认为这是两个相同的分布矩是描述概率分布的重要特征,期望、方差等概念都是矩的特殊形态直觉上可以简单理解为:各阶矩相等 → 各个特征相等 → 分布相同.
原创
发布博客 2021.08.21 ·
814 阅读 ·
2 点赞 ·
0 评论

洛必达法则

洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。简介众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。类型零比零型若函数f(x)f(x)f(x)和g(x)g(x)g(x)满足如下条件:在aaa点收敛于0lim⁡x→af(x)=0,lim⁡x→ag(x)=0\lim _{x \rightarrow a} f(x)=0, \lim _{x \ri.
原创
发布博客 2021.08.13 ·
214 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 6 - 切比雪夫不等式

切比雪夫不等式可以使人们在随机变量X的分布未知的情况下,对事件$|X-\mu|<\varepsilon $ 概率作出估计。定义假设随机变量XXX具有期望E(X)=μE(X)=\muE(X)=μ, 方差 Var(X)=σ2Var(X)=\sigma^2Var(X)=σ2,则对于任意正数ε\varepsilonε ,有不等式成立:P{∣X−μ∣≥ε}≤σ2ε2\mathbb P\{|X-\mu| \geq \varepsilon\} \leq \frac{\sigma^{2}}{\var.
原创
发布博客 2021.08.13 ·
2867 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 5 - 马尔可夫不等式

马尔可夫不等式把概率关联到数学期望,给出了随机变量的累积分布函数一个宽泛但仍有用的界。定义马尔可夫不等式用于估计尾事件的概率上界。若随机变量XXX只取非负值,则∀a>0\forall a>0∀a>0有:P(X≥a)≤E(X)a\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}P(X≥a)≤aE(X)​证明思路1放大概率,得到部分函数期望截断函数期望,二者相比较考虑 X≥aX\ge aX≥a的情况 → .
原创
发布博客 2021.08.13 ·
460 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 4 - 协方差、相关系数、协方差矩阵

本文介绍协方差。协方差协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 —— 百度百科定义在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。期望值分别为E[X.
原创
发布博客 2021.08.13 ·
105 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 3 - 方差

本文介绍方差。方差定义数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。 ——百度百科对随机变量XXX,若E[(X−E[X])2]\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]E[(X−E[X])2]存在,则称它为XXX的方差,记作 Var[X]Var[X]Var[X]。XXX的标准差为方差的开平方:σ=Var⁡[X]\sigma=\sqrt{\op.
原创
发布博客 2021.08.13 ·
201 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 1 - 基础概念

本系列记录概率论基础知识,本文介绍最基本的概率论概念。概率与分布条件概率与独立事件条件概率已知AAA事件发生的条件下BBB发生的概率,记作P(B∣A)P(B \mid A)P(B∣A) ,它等于事件ABABAB的概率相对于事件AAA的概率,即:P(B∣A)=P(AB)P(A)P(B \mid A)=\frac{P(A B)}{P(A)}P(B∣A)=P(A)P(AB)​其中 P(A)>0{P(A)} > 0P(A)>0条件概率分布的链式法则对于nnn个随.
原创
发布博客 2021.08.13 ·
33 阅读 ·
0 点赞 ·
0 评论

概率论基础 - 2 - 期望

本文介绍期望。期望定义数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。 ——百度百科期望描述了随机变量的平均情况,衡量了随机变量 的均值。它是概率分布的泛函(函数的函数)。计算方法离散型离散随机变量XXX的期望:E[X]=∑i=1∞xipi\mathbb{E}[X]=\sum_{i=1}^{\infty} x_{i} p_{i}E[X]=i=1∑∞​xi​pi​若右侧级.
原创
发布博客 2021.08.13 ·
123 阅读 ·
0 点赞 ·
0 评论

Windows 软件推荐 - 小黄条 全平台同步桌面便签

这是一款嵌入电脑桌面的Todolist工具,大小2.1M,也是免安装直接使用的,类似于电脑上的“便利贴”。简介每天的工作任务有很多,这个时候该如何有序的安排呢?「小黄条」将手机和电脑同步,自定义一个桌面便利贴,记录和标注待办事项,字体颜色和风格都可以自行设置。全平台同步简直是直击灵魂深处的需求如果邀请了6个小伙伴点你的链接,可以以年费12元享受一年数据同步服务,不然得96下载安装官网下载:https://www.yynote.cn/...
原创
发布博客 2021.08.13 ·
253 阅读 ·
0 点赞 ·
0 评论

2021-08-13Windows 软件推荐 - listary —— Windows 上的高效启动器

如果你的日常工作需要经常处理邮件,你一定会为保存附件时,从我的电脑到X盘再一级一级的目录打开,直到找到你所想要的目录。这种频繁的文件夹点击将会极大的制约你的效率。本文介绍Windows快速启动神器 listary 。简介Windows虽以可视化所见即所得著称,系统不停的升级,但是核心的文档操作方式和方法并没有显著的改善,所以频繁双击、查找、另存都是系统的一个硬伤。Listary首先是一款超高效的全局搜索软件。最常用的是搜索已安装的应用和寻找任何的文件、文件夹。比如你要快速打开一个cmd,.
原创
发布博客 2021.08.13 ·
302 阅读 ·
0 点赞 ·
0 评论
加载更多