友情链接:
•时空数据库系列(一)什么是时空数据?特征和适用场景有哪些?
•时空数据库系列(二)时空数据库介绍 了解数据模型与应用场景
•时空数据库系列(三)技术讲解:时空轨迹数据压缩、空间索引R-tree
•时空数据库系列(四)如何高效存储、分析时空数据?时空数据库Spacture给了我们答案
•时空数据库系列(五)星环时空数据库Spacture案例与Demo演示
背景-时空数据库快速发展,有哪些需求
传感器网络、移动互联网、射频识别、全球定位系统等设备时刻输出时间和空间数据,数据量增长非常迅速,这对存储和管理时空数据带来了挑战,传统数据库很难应对时空数据。另外随着民用航空航天市场的开放,卫星遥感数据量呈爆发式增加,每天增加TB级,为遥感影像的管理存储以及计算带来了新的机遇与挑战;
多维度数据
针对传统二维矢量数据的存储管理,如今对三维、四维以及多维度场景数据存储管理需求越来越大
时序数据
传统时空数据库主要对静态矢量数据的管理,对应时序动态变化数据(如轨迹数据)在存储管理和业务功能上支持度比较有限
三维模型存储管理
随着国家建设智慧城市、实景三维等三维场景新需求,也对时空数据库的三维模型以及三维瓦片等的管理存储以及计算提出新的要求
点云数据存储管理
北斗导航、激光点云、倾斜摄影、高精地图等新兴测绘技术产生大量高精的点云数据,点云数据的高效存储管理也是时空数据库的需求点
海量栅格数据存储计算
传统时空数据库只能对较小场景的栅格进行计算分析,面对海量栅格存储计算在性能上还是有一定不足
多行业多场景业务功能
传统时空数据更多的应用于国土资源行业,随着互联网技术的高效发展,时空数据已经深入到各行各业时空数据已经深入到各行各业(自动驾驶、疫情防控、行星与极地探索、水电建设、应急防灾、生态监测、智慧城市等)成为新时代的新基建,时空数据库面对多行业多场景的特点,将提供特殊性和通用性两角度的需求生态。
开源产品GeoMesa/MobilityDB存在的不足
GeoMesa
a) 只支持矢量数据存储
GeoMesa仅支持对矢量数据的存储,不支持对多维时空轨迹数据、栅格数据、瓦片数据的存储。
b) 时空索引能力弱
GeoMesa底层主要是通过键值的方式对空间对象进行存储;受制于该存储模式,GeoMesa的时空索引能力较弱,只能通过行键构建索引,无法支持R-tree等复杂索引。
c) 不支持GeoSOT等国家标准
不支持GeoSOT、北斗网格码等国家标准,无法使用GeoSOT及北斗网格对时空对象进行编码及管理。
MobilityDB
a) 不支持栅格数据存储
只支持基于矢量的基本时空类型,没有提供栅格分析功能,更没提供时序栅格数据的存储能力。
b) 时空分析能力弱
只定义了基本的时空类型及函数,时空分析能力偏弱;缺乏针对轨迹数据的常用处理及分析功能,如轨迹拆分、轨迹相似度等。
c) 缺乏复杂场景定制化的能力
MobilityDB只提供基本的时空存储及分析功能,缺乏对国内一些复杂定制化场景的支持,如社会管理、态势分析等场景。
星环科技自主可控时空数据库Spacture介绍
Transwarp Spacture是星环自主研发的时空数据库。支持大规模矢量数据、遥感影像数据、数字高程数据、时空轨迹数据的存储与计算,具有完备的数据查询、分析和挖掘能力,可用于时空查询分析、时空模式挖掘、时空轨迹聚类等时空轨迹数据分析场景,广泛应用于交通物流、城市管理、位置服务等场景。
Spacture由通用数据库底座和时空插件两部分组成,通用数据库底座基于 MPP(大规模并行处理)架构,对外兼容PostgreSQL,支持通过PostgreSQL协议访问Spacture;同时Spacture还提供了一系列针对时空数据的插件,原生支持了矢量、栅格、瓦片、轨迹等多种空间数据的存储。
Spacture在大数据量情况下具有良好的可扩展性能,存储容量能够根据节点数量线性扩展,可满足 PB 级海量数据,实现空间、时空数据存储和分析。
Spacture应用场景
1)城市管理
通过轨迹数据挖掘发现隐含的知识,探求深层次的城市动力学机制,为解决城市交通、城市环境、突发事件应急等重大社会问题提供辅助手段。
2)交通物流
通过轨迹数据分析来深入理解交通路况特征和拥堵的演化模式,综合运用历史事件、时空、活动、天气等多维信息,辅助构建数据驱动的城市交通指挥体系。
3)测绘遥感
提供针对栅格数据的原生模型支持, 有效支撑大规模遥感影像数据和栅格数据的存储、查询和基础分析处理能力。
更多对比的技术优势请参考: 如何高效存储、分析时空数据?时空数据库Spacture给了我们答案