tensorflow 将ckpt中的参数存储为 npy 格式。

reader=pywrap_tensorflow.NewCheckpointReader(FILE_PATH)
    var_to_shape_map=reader.get_variable_to_shape_map()
    for key in var_to_shape_map:
        print(key)


    layers = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2','conv3_1', 'conv3_2','conv3_3', 'conv4_1', 'conv4_2','conv4_3','conv5_1','conv5_2', 'conv5_3', 'fc6', 'fc7', 'cls_score','bbox_pred','rpn_cls_score','rpn_bbox_pred']
    data = {
        'conv1_1': [],
        'conv1_2': [],
        'conv2_1': [],
        'conv2_2': [],
        'conv3_1': [],
        'conv3_2': [],
        'conv3_3': [],
        'conv4_1': [],
        'conv4_2': [],
        'conv4_3': [],
        'conv5_1': [],
        'conv5_2': [],
        'conv5_3': [],
        'fc6': [],
        'fc7': [],
        'cls_score_na': [],
        'bbox_pred_na':[],
        'rpn_cls_score_na': [],
        'rpn_bbox_pred_na':[]
    }

    for op_name in layers:

        biases_variable = reader.get_tensor(op_name+'/biases')
        weights_variable = reader.get_tensor(op_name+'/weights')
        tmp={'biases':biases_variable,'weights':weights_variable}

        data[op_name] = tmp
    np.save(OUTPUT_FILE, data)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值