接着上一篇文章,我们现在进行inception-v3的迁移学习,用原来的权重参数进行特征提取,在最后的瓶颈中添加一个分类层。
在pool_3后面添加一个input,然后训练这些。其中数据集
- #!/usr/bin/env python3
- # -*- coding: utf-8 -*-
- import glob
- import os.path
- import random
- import numpy as np
- import tensorflow as tf
- from tensorflow.python.platform import gfile
- # Inception-v3模型瓶颈层的节点个数
- BOTTLENECK_TENSOR_SIZE = 2048
- # Inception-v3模型中代表瓶颈层结果的张量名称。
- # 在谷歌提出的Inception-v3模型中,这个张量名称就是'pool_3/_reshape:0'。
- # 在训练模型时,可以通过tensor.name来获取张量的名称。
- BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0'
- # 图像输入张量所对应的名称。
- JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0'
- # 下载的谷歌训练好的Inception-v3模型文件目录
- MODEL_DIR = 'inception_dec_2015/'
- # 下载的谷歌训练好的Inception-v3模型文件名
- MODEL_FILE = 'classify_image_graph_def.pb'
- # 因为一个训练数据会被使用多次,所以可以将原始图像通过Inception-v3模型计算得到的特征向量保存在文件中,免去重复的计算。
- # 下面的变量定义了这些文件的存放地址。
- CACHE_DIR = 'bottleneck/'
- # 图片数据文件夹。
- # 在这个文件夹中每一个子文件夹代表一个需要区分的类别,每个子文件夹中存放了对应类别的图片。
- INPUT_DATA = 'data/train/'
- # 验证的数据百分比
- VALIDATION_PERCENTAGE = 10
- # 测试的数据百分比
- TEST_PERCENTAGE = 10
- # 定义神经网络的设置
- LEARNING_RATE = 0.01
- STEPS = 4000
- BATCH = 100
- # 这个函数从数据文件夹中读取所有的图片列表并按训练、验证、测试数据分开。
- # testing_percentage和validation_percentage参数指定了测试数据集和验证数据集的大小。
- def create_image_lists(testing_percentage, validation_percentage):
- # 得到的所有图片都存在result这个字典(dictionary)里。
- # 这个字典的key为类别的名称,value也是一个字典,字典里存储了所有的图片名称。
- result = {}
- # 获取当前目录下所有的子目录
- sub_dirs = [x[0] for x in os.walk(INPUT_DATA)]
- # 得到的第一个目录是当前目录,不需要考虑
- is_root_dir = True
- for sub_dir in sub_dirs:
- if is_root_dir:
- is_root_dir = False
- continue
- # 获取当前目录下所有的有效图片文件。
- extensions = ['jpg', 'jpeg', 'JPG', 'JPEG']
- file_list = []
- dir_name = os.path.basename(sub_dir)
- for extension in extensions:
- file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
- file_list.extend(glob.glob(file_glob))
- if not file_list:
- continue
- # 通过目录名获取类别的名称。
- label_name = dir_name.lower()
- # 初始化当前类别的训练数据集、测试数据集和验证数据集
- training_images = []
- testing_images = []
- validation_images = []
- for file_name in file_list:
- base_name = os.path.basename(file_name)
- # 随机将数据分到训练数据集、测试数据集和验证数据集。
- chance = np.random.randint(100)
- if chance < validation_percentage:
- validation_images.append(base_name)
- elif chance < (testing_percentage + validation_percentage):
- testing_images.append(base_name)
- else:
- training_images.append(base_name)
- # 将当前类别的数据放入结果字典。
- result[label_name] = {
- 'dir': dir_name,
- 'training': training_images,
- 'testing': testing_images,
- 'validation': validation_images
- }
- # 返回整理好的所有数据
- return result
- # 这个函数通过类别名称、所属数据集和图片编号获取一张图片的地址。
- # image_lists参数给出了所有图片信息。
- # image_dir参数给出了根目录。存放图片数据的根目录和存放图片特征向量的根目录地址不同。
- # label_name参数给定了类别的名称。
- # index参数给定了需要获取的图片的编号。
- # category参数指定了需要获取的图片是在训练数据集、测试数据集还是验证数据集。
- def get_image_path(image_lists, image_dir, label_name, index, category):
- # 获取给定类别中所有图片的信息。
- label_lists = image_lists[label_name]
- # 根据所属数据集的名称获取集合中的全部图片信息。
- category_list = label_lists[category]
- mod_index = index % len(category_list)
- # 获取图片的文件名。
- base_name = category_list[mod_index]
- sub_dir = label_lists['dir']
- # 最终的地址为数据根目录的地址 + 类别的文件夹 + 图片的名称
- full_path = os.path.join(image_dir, sub_dir, base_name)
- return full_path
- # 这个函数通过类别名称、所属数据集和图片编号获取经过Inception-v3模型处理之后的特征向量文件地址。
- def get_bottlenect_path(image_lists, label_name, index, category):
- return get_image_path(image_lists, CACHE_DIR, label_name, index, category) + '.txt';
- # 这个函数使用加载的训练好的Inception-v3模型处理一张图片,得到这个图片的特征向量。
- def run_bottleneck_on_image(sess, image_data, image_data_tensor, bottleneck_tensor):
- # 这个过程实际上就是将当前图片作为输入计算瓶颈张量的值。这个瓶颈张量的值就是这张图片的新的特征向量。
- bottleneck_values = sess.run(bottleneck_tensor, {image_data_tensor: image_data})
- # 经过卷积神经网络处理的结果是一个四维数组,需要将这个结果压缩成一个特征向量(一维数组)
- bottleneck_values = np.squeeze(bottleneck_values)
- return bottleneck_values
- # 这个函数获取一张图片经过Inception-v3模型处理之后的特征向量。
- # 这个函数会先试图寻找已经计算且保存下来的特征向量,如果找不到则先计算这个特征向量,然后保存到文件。
- def get_or_create_bottleneck(sess, image_lists, label_name, index, category, jpeg_data_tensor, bottleneck_tensor):
- # 获取一张图片对应的特征向量文件的路径。
- label_lists = image_lists[label_name]
- sub_dir = label_lists['dir']
- sub_dir_path = os.path.join(CACHE_DIR, sub_dir)
- if not os.path.exists(sub_dir_path):
- os.makedirs(sub_dir_path)
- bottleneck_path = get_bottlenect_path(image_lists, label_name, index, category)
- # 如果这个特征向量文件不存在,则通过Inception-v3模型来计算特征向量,并将计算的结果存入文件。
- if not os.path.exists(bottleneck_path):
- # 获取原始的图片路径
- image_path = get_image_path(image_lists, INPUT_DATA, label_name, index, category)
- # 获取图片内容。
- image_data = gfile.FastGFile(image_path, 'rb').read()
- # print(len(image_data))
- # 由于输入的图片大小不一致,此处得到的image_data大小也不一致(已验证),但却都能通过加载的inception-v3模型生成一个2048的特征向量。具体原理不详。
- # 通过Inception-v3模型计算特征向量
- bottleneck_values = run_bottleneck_on_image(sess, image_data, jpeg_data_tensor, bottleneck_tensor)
- # 将计算得到的特征向量存入文件
- bottleneck_string = ','.join(str(x) for x in bottleneck_values)
- with open(bottleneck_path, 'w') as bottleneck_file:
- bottleneck_file.write(bottleneck_string)
- else:
- # 直接从文件中获取图片相应的特征向量。
- with open(bottleneck_path, 'r') as bottleneck_file:
- bottleneck_string = bottleneck_file.read()
- bottleneck_values = [float(x) for x in bottleneck_string.split(',')]
- # 返回得到的特征向量
- return bottleneck_values
- # 这个函数随机获取一个batch的图片作为训练数据。
- def get_random_cached_bottlenecks(sess, n_classes, image_lists, how_many, category,
- jpeg_data_tensor, bottleneck_tensor):
- bottlenecks = []
- ground_truths = []
- for _ in range(how_many):
- # 随机一个类别和图片的编号加入当前的训练数据。
- label_index = random.randrange(n_classes)
- label_name = list(image_lists.keys())[label_index]
- image_index = random.randrange(65536)
- bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, image_index, category,
- jpeg_data_tensor, bottleneck_tensor)
- ground_truth = np.zeros(n_classes, dtype=np.float32)
- ground_truth[label_index] = 1.0
- bottlenecks.append(bottleneck)
- ground_truths.append(ground_truth)
- return bottlenecks, ground_truths
- # 这个函数获取全部的测试数据。在最终测试的时候需要在所有的测试数据上计算正确率。
- def get_test_bottlenecks(sess, image_lists, n_classes, jpeg_data_tensor, bottleneck_tensor):
- bottlenecks = []
- ground_truths = []
- label_name_list = list(image_lists.keys())
- # 枚举所有的类别和每个类别中的测试图片。
- for label_index, label_name in enumerate(label_name_list):
- category = 'testing'
- for index, unused_base_name in enumerate(image_lists[label_name][category]):
- # 通过Inception-v3模型计算图片对应的特征向量,并将其加入最终数据的列表。
- bottleneck = get_or_create_bottleneck(sess, image_lists, label_name, index, category,
- jpeg_data_tensor, bottleneck_tensor)
- ground_truth = np.zeros(n_classes, dtype=np.float32)
- ground_truth[label_index] = 1.0
- bottlenecks.append(bottleneck)
- ground_truths.append(ground_truth)
- return bottlenecks, ground_truths
- def main(_):
- # 读取所有图片。
- image_lists = create_image_lists(TEST_PERCENTAGE, VALIDATION_PERCENTAGE)
- n_classes = len(image_lists.keys())
- # 读取已经训练好的Inception-v3模型。
- # 谷歌训练好的模型保存在了GraphDef Protocol Buffer中,里面保存了每一个节点取值的计算方法以及变量的取值。
- # TensorFlow模型持久化的问题在第5章中有详细的介绍。
- with gfile.FastGFile(os.path.join(MODEL_DIR, MODEL_FILE), 'rb') as f:
- graph_def = tf.GraphDef()
- graph_def.ParseFromString(f.read())
- # 加载读取的Inception-v3模型,并返回数据输入所对应的张量以及计算瓶颈层结果所对应的张量。
- bottleneck_tensor, jpeg_data_tensor = tf.import_graph_def(graph_def, return_elements=[BOTTLENECK_TENSOR_NAME,
- JPEG_DATA_TENSOR_NAME])
- # 定义新的神经网络输入,这个输入就是新的图片经过Inception-v3模型前向传播到达瓶颈层时的结点取值。
- # 可以将这个过程类似的理解为一种特征提取。
- bottleneck_input = tf.placeholder(tf.float32, [None, BOTTLENECK_TENSOR_SIZE], name='BottleneckInputPlaceholder')
- # 定义新的标准答案输入
- ground_truth_input = tf.placeholder(tf.float32, [None, n_classes], name='GroundTruthInput')
- # 定义一层全连接层来解决新的图片分类问题。
- # 因为训练好的Inception-v3模型已经将原始的图片抽象为了更加容易分类的特征向量了,所以不需要再训练那么复杂的神经网络来完成这个新的分类任务。
- with tf.name_scope('final_training_ops'):
- weights = tf.Variable(tf.truncated_normal([BOTTLENECK_TENSOR_SIZE, n_classes], stddev=0.001))
- biases = tf.Variable(tf.zeros([n_classes]))
- logits = tf.matmul(bottleneck_input, weights) + biases
- final_tensor = tf.nn.softmax(logits)
- # 定义交叉熵损失函数
- cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=ground_truth_input)
- cross_entropy_mean = tf.reduce_mean(cross_entropy)
- train_step = tf.train.GradientDescentOptimizer(LEARNING_RATE).minimize(cross_entropy_mean)
- # 计算正确率
- with tf.name_scope('evaluation'):
- correct_prediction = tf.equal(tf.argmax(final_tensor, 1), tf.argmax(ground_truth_input, 1))
- evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- with tf.Session() as sess:
- tf.initialize_all_variables().run()
- # 训练过程
- for i in range(STEPS):
- # 每次获取一个batch的训练数据
- train_bottlenecks, train_ground_truth = get_random_cached_bottlenecks(
- sess, n_classes, image_lists, BATCH, 'training', jpeg_data_tensor, bottleneck_tensor)
- sess.run(train_step,
- feed_dict={bottleneck_input: train_bottlenecks, ground_truth_input: train_ground_truth})
- # 在验证集上测试正确率。
- if i % 100 == 0 or i + 1 == STEPS:
- validation_bottlenecks, validation_ground_truth = get_random_cached_bottlenecks(
- sess, n_classes, image_lists, BATCH, 'validation', jpeg_data_tensor, bottleneck_tensor)
- validation_accuracy = sess.run(evaluation_step, feed_dict={
- bottleneck_input: validation_bottlenecks, ground_truth_input: validation_ground_truth})
- print('Step %d: Validation accuracy on random sampled %d examples = %.1f%%'
- % (i, BATCH, validation_accuracy * 100))
- # 在最后的测试数据上测试正确率
- test_bottlenecks, test_ground_truth = get_test_bottlenecks(sess, image_lists, n_classes,
- jpeg_data_tensor, bottleneck_tensor)
- test_accuracy = sess.run(evaluation_step, feed_dict={bottleneck_input: test_bottlenecks,
- ground_truth_input: test_ground_truth})
- print('Final test accuracy = %.1f%%' % (test_accuracy * 100))
- if __name__ == '__main__':
- tf.app.run()
然后进行训练,代码中注释比较全,所以就不进行详解了。
这是训练的图片。