项目已上传至 GitHub —— transfer-learning
更新:
- 2018/3/16:添加了保存模型和摘要的代码,都保存在 runs/ 目录下
- 2018/3/17:添加了测试代码,用于测试一张图片的类别
- 2018/3/18:添加了训练之后输出标签文件的代码
1. 数据集及模型下载
1.1 数据集
通过官方下载地址,下载之后解压。解压后的目录结构:
flower_photos/
daisy/
dandelion/
roses/
sunflowers/
tulips/
解压之后包含 5 个子文件夹,每个子文件夹的名称为一种花的名称,平均每一种花有 734 张图片,每张图片都是 RGB 色彩模式,大小不同。
1.2 Inception-v3模型
以下有两种下载方式,如果链接失效可以搜索网上的资源:
解压后有两个文件,将要使用的是 .pb 文件:
imagenet_comp_graph_label_strings.txt
tensorflow_inception_graph.pb
2. 目录结构
将数据集及模型文件下载好之后,分别放在 data/ 和 model/ 文件夹下,然后新建一个 train.py 文件用于实现迁移学习。
还需要新建一个 tmp/bottleneck/ 文件夹用于存放每张图片通过 Inception-v3 模型计算得到的特征向量。该文件夹的结构与 flower_photos 文件夹类似,可以在代码中生成各子文件夹,或者手动创建。
目录结构如下:
transfer-learning/
data/
flower_photos/
......
tmp/
bottleneck/
......
model/
imagenet_comp_graph_label_strings.txt
tensorflow_inception_graph.pb
train.py
3. 完整代码
该迁移学习方法的实现是,替换掉了 Inception-v3 模型的最后一层全连接层。用瓶颈层的输出来训练一个新的全连接层处理花的分类问题。
由于训练数据、验证数据和测试数据都是训练的时候随机分配的,所以训练正确率是不可再现的,并且差距较大,甚至能达到 10% 左右的差距。不过能用这么少的数据集达到 90% 以上的正确率也是很不错了。
源码如下:
import glob
import os.path
import random
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
# 数据参数
MODEL_DIR = 'model/' # inception-v3模型的文件夹
MODEL_FILE = 'tensorflow_inception_graph.pb' # inception-v3模型文件名
CACHE_DIR = 'data/tmp/bottleneck' # 图像的特征向量保存地址
INPUT_DATA = 'data/flower_photos' # 图片数据文件夹
VALIDATION_PERCENTAGE = 10 # 验证数据的百分比
TEST_PERCENTAGE = 10 # 测试数据的百分比
# inception-v3模型参数
BOTTLENECK_TENSOR_SIZE = 2048 # inception-v3模型瓶颈层的节点个数
BOTTLENECK_TENSOR_NAME = 'pool_3/_reshape:0' # inception-v3模型中代表瓶颈层结果的张量名称
JPEG_DATA_TENSOR_NAME = 'DecodeJpeg/contents:0' # 图像输入张量对应的名称
# 神经网络的训练参数
LEARNING_RATE = 0.01
STEPS = 1000
BATCH = 100
CHECKPOINT_EVERY = 100
NUM_CHECKPOINTS = 5
# 从数据文件夹中读取所有的图片列表并按训练、验证、测试分开
def create_image_lists(validation_percentage, test_percentage):
result = {
} # 保存所有图像。key为类别名称。value也是字典,存储了所有的图片名称
sub_dirs = [x[0] for x in os.walk(INPUT_DATA)] # 获取所有子目录
is_root_dir = True # 第一个目录为当前目录,需要忽略
# 分别对每个子目录进行操作
for sub_dir in sub_dirs:
if is_root_dir:
is_root_dir = False
continue
# 获取当前目录下的所有有效图片
extensions = {
'jpg', 'jpeg', 'JPG', 'JPEG'}
file_list = [] # 存储所有图像
dir_name = os.path.basename(sub_dir) # 获取路径的最后一个目录名字
for extension in extensions:
file_glob = os.path.join(INPUT_DATA, dir_name, '*.' + extension)
file_list.extend(glob.glob(file_glob))
if not file_list:
continue
# 将当前类别的图片随机分为训练数据集、测试数据集、验证数据集
label_name = dir_name.lower() # 通过目录名获取类别的名称
training_images = []
testing_images = []
validation_images = []
for file_name in file_list:
base_name = os.path.basename(file_name) # 获取该图片的名称
chance = np.random.randint(100) # 随机产生100个数代表百分比
if chance < validation_percentage:
validation_images.append(base_name)
elif chance < (validation_percentage + test_percentage):
testing_images.append(base_name)
else:
training_images.append(base_name)
# 将当前类别的数据集放入结果字典
result[label_name] = {
'dir': dir_name,
'training': training_images,
'testing': testing_images,
'validation': validation_images
}
# 返回整理好的所有数据
return result
# 通过类别名称、所属数据集、图片编号获取一张图片的地址
def get_image_path(image_lists, image_dir, label_name, index, category):
label_lists = image_lists[label_name] # 获取给定类别中的所有图片
category_list = label_lists[category] # 根据所属数据集的名称获取该集合中的全部图片
mod_index = index % len(category_list) # 规范图片的索引
base_name = category_list[mod_index] # 获取图片的文件名
sub_dir = label_lists['dir']