tensorflow的高级封装slim

本文介绍了TensorFlow Slim库的基本使用方法,包括常用函数如slim.conv2d、slim.max_pool2d等,并详细讲解了arg_scope的用法。此外还分享了在使用slim.batch_norm时遇到的问题及其解决方案。
摘要由CSDN通过智能技术生成

Tensorflow slim库使用小记


slim库是tensorflow中的一个高层封装,它将原来很多tf中复杂的函数进一步封装,省去了很多重复的参数,以及平时不会考虑到的参数。可以理解为tensorflow的升级版。

导入方式:

?
1
2
import tensorflow as tf
import tensorflow.contrib.slim as slim

常用函数

slim.conv2d

slim.conv2d是基于tf.conv2d的进一步封装,省去了很多参数,一般调用方法如下:

?
1
net = slim.conv2d(inputs, 256 , [ 3 , 3 ], stride= 1 , scope= 'conv1_1' )

前三个参数依次为网络的输入,输出的通道,卷积核大小,stride是做卷积时的步长。除此之外,还有几个经常被用到的参数:

?
1
2
3
4
5
6
7
8
9
padding : 补零的方式,例如 'SAME'
activation_fn : 激活函数,默认是nn.relu
normalizer_fn : 正则化函数,默认为None,这里可以设置为batch normalization,函数用slim.batch_norm
normalizer_params : slim.batch_norm中的参数,以字典形式表示
weights_initializer : 权重的初始化器,initializers.xavier_initializer()
weights_regularizer : 权重的正则化器,一般不怎么用到
biases_initializer : 如果之前有batch norm,那么这个及下面一个就不用管了
biases_regularizer :
trainable : 参数是否可训练,默认为True

slim.max_pool2d

这个函数更简单了,用法如下:

?
1
net = slim.max_pool2d(net, [ 2 , 2 ], scope= 'pool1' )

slim.fully_connected

?
1
slim.fully_connected(x, 128 , scope= 'fc1' )

前两个参数分别为网络输入、输出的神经元数量。

slim.arg_scope

slim.arg_scope可以定义一些函数的默认参数值,在scope内,我们重复用到这些函数时可以不用把所有参数都写一遍。

?
1
2
3
4
5
6
7
8
9
10
11
12
with slim.arg_scope([slim.conv2d, slim.fully_connected],
                     trainable=True,
                     activation_fn=tf.nn.relu,
                     weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 ),
                     weights_regularizer=slim.l2_regularizer( 0.0001 )):
     with slim.arg_scope([slim.conv2d],
                         kernel_size=[ 3 , 3 ],
                         padding= 'SAME' ,
                         normalizer_fn=slim.batch_norm):
         net = slim.conv2d(net, 64 , scope= 'conv1' ))
         net = slim.conv2d(net, 128 , scope= 'conv2' ))
         net = slim.conv2d(net, 256 , [ 5 , 5 ], scope= 'conv3' ))

slim.arg_scope的用法基本都体现在上面了。一个slim.arg_scope内可以用list来同时定义多个函数的默认参数(前提是这些函数都有这些参数),另外,slim.arg_scope也允许相互嵌套。在其中调用的函数,可以不用重复写一些参数(例如kernel_size=[3, 3]),但也允许覆盖(例如最后一行,卷积核大小为[5,5])。
另外,还可以把这么多scope封装成函数:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
def new_arg_sc():
     with slim.arg_scope([slim.conv2d, slim.fully_connected],
                         trainable=True,
                         activation_fn=tf.nn.relu,
                         weights_initializer=tf.truncated_normal_initializer(stddev= 0.01 ),
                         weights_regularizer=slim.l2_regularizer( 0.0001 )):
         with slim.arg_scope([slim.conv2d],
                             kernel_size=[ 3 , 3 ],
                             padding= 'SAME' ,
                             normalizer_fn=slim.batch_norm) as sc:
             return sc
 
def main():
     ......
     with slim.arg_scope(new_arg_sc()):
         ......

batch normalization的问题

接下来说我在用slim.batch_norm时踩到的坑。slim.batch_norm里有moving_mean和moving_variance两个量,分别表示每个批次的均值和方差。在测试时还好理解,但在测试时,moving_mean和moving_variance的含义变了。在训练时,有一些语句是必不可少的:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 定义占位符,X表示网络的输入,Y表示真实值label
X = tf.placeholder( "float" , [None, 224 , 224 , 3 ])
Y = tf.placeholder( "float" , [None, 100 ])
 
#调用含batch_norm的resnet网络,其中记得is_training=True
logits = model.resnet(X, 100 , is_training=True)
cross_entropy = -tf.reduce_sum(Y*tf.log(logits))
 
#训练的op一定要用slim的slim.learning.create_train_op,只用tf.train.MomentumOptimizer.minimize()是不行的
opt = tf.train.MomentumOptimizer(lr_rate, 0.9 )
train_op = slim.learning.create_train_op(cross_entropy, opt, global_step=global_step)
 
#更新操作,具体含义不是很明白,直接套用即可
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
if update_ops:
     updates = tf.group(*update_ops)
     cross_entropy = control_flow_ops.with_dependencies([updates], cross_entropy)

之后的训练都和往常一样了,导出模型后,在测试阶段调用相同的网络,参数is_training一定要设置成False。

?
1
logits = model.resnet(X, 100 , is_training=False)

否则,可能会出现这种情况:所有的单个图像分类,最后几乎全被归为同一类。这可能就是训练模式设置反了的问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值