机器学习有三大分支,监督学习、无监督学习和强化学习,强化学习是系统从环境学习以使得奖励最大的机器学习。人工智能中称之为强化学习,在控制论中被称之为动态规划,两者在概念上是等价的。也被翻译为增强学习。
二、概念
1.不同于机器学习的其它两个分支:
- 它不是无监督学习,因为有回报(Reward)信号
- 反馈是延时的,而不是即时的
- 数据是与时间有关的序列
- 智能体的动作与后续的数据有关
2.强化学习基于一种回报假设:
- 回报是标量反馈信号
- 表明智能体(Agent)在这步做得有多好
- 智能体(Agent)的任务就是最大化累计回报
增强学习也称为强化学习:
强化学习目的是构造一个控制策略,使得Agent行为性能达到最大。Agent从复杂的环境中感知信息,对信息进行处理。Agent通过学习改进自身的性能并选择行为,从而产生群体行为的选择,个体行为选择和群体行为选择使得Agent作出决策选择某一动作,进而影响环境。
增强学习是指从动物学习、随机逼近和优化控制等理论发展而来,是一种无导师在线学习技术,从环境状态到动作映射学习,使得Agent根据最大奖励值采取最优的策略;Agent感知环境中的状态信息,搜索策略(哪种策略可以产生最有效的学习)选择最优的动作,从而引起状态的改变并得到一个延迟回报值,更新评估函数,完成一次学习过程后,进入下一轮的学习训练,重复循环迭代,直到满足整个学习的条件,终止学习。