PCA和SVD降维

本文探讨了在大规模数据集上,由于高维度导致的问题,并介绍了两种常用的降维方法:PCA(主成分分析)和SVD(奇异值分解)。PCA通过选取方差最大的方向来降维,简化数据并识别关键特征;SVD则采用矩阵分解,通过保留最重要的奇异值来重构数据。这两种方法常用于推荐系统和图像压缩等领域,虽有降低数据复杂度、去除噪声的优点,但也可能损失信息并降低程序速度。
摘要由CSDN通过智能技术生成

1 问题引入

前边几章我们学习了很多机器学习的算法,它们在小规模数据上都很有效,但在实际生活中,我们的数据集可能是巨大的,在大规模、多维度数据上运行算法效果往往没有那么好,原因之一是数据的维度太大,有些特征可能对我们的算法决策没有太大影响,或是一些噪声产生干扰。本章我们会提前对数据进行降维处理,只保留数据集中最重要的特征,对数据进行简化,即数据的预处理阶段。

2 PCA

2.1 工作原理

PCA-主成分分析法,是目前应用最广泛的降维技术,通过对原坐标系进行转换,减少原来的坐标轴数量,达到降维的目的。选择的准则是,第一个坐标轴(或方向)选择原始数据中方差最大的方向,第二个坐标轴在和第一个坐标轴正交的前提下,选择方差次大的方向,该过程一直重复,我们会发现大部分的方差(信息)都包含在前几个坐标轴中,所以我们可以忽略余下的坐标轴,即完成了数据的降维。

2.2 数学原理

X是原数据,Y是降维后的数据,P是基向量(特征向量),C是原协方差矩阵,D是对角矩阵(新协方差矩阵)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值