题目描述
求一个集合的所有结合,例如集合{A,B,C}的所有子集为:{},{A,B,C},{A,B},{A,C},{B,C},{A},{B},{C}。
思路
实际上求子集问题是一个经典的DFS,每一次选择某个元素时,都会面临两个选择,一个是不选一个是选:
第一步:选择A元素,有两种选择,一个是选A,另一个是不选A
第二步,选择B,还是有两种选择
第三步:选择C,同样有两种选择
此时最下面一排就是我们得到的所有子集。
代码实现
上面画的图实际上就是一颗递归树。
/**
* 编写一个算法得到一个集合的所有子集
*/
public class Main {
public static void main(String[] args) {
int[] arr = {1, 2};
Set<Set<Integer>> f = f(arr.length, arr);
System.out.println(f);
}
/**
*
* @param k 这一波需要加入的第几号元素
* @param arr
* @return
*/
public static Set<Set<Integer>> f(int k, int[] arr) {
if (k == 0) {
Set<Set<Integer>> set = new HashSet<>();
set.add(new HashSet<>());//添加一个空集合
return set;
}
Set<Set<Integer>> set = f(k - 1, arr);
Set<Set<Integer>> resultSet = new HashSet<>();
for (Set<Integer> integerSet : set) {//扫描上一层的集合
//上一层的每个集合都包含两种情况,一种是加入新来的元素,另一种是不加入新的元素
HashSet<Integer> subSet = new HashSet<>();
subSet.addAll(integerSet);
subSet.add(arr[k - 1]);
resultSet.add(subSet);
resultSet.add(integerSet);
}
return resultSet;
}
}