机器学习-模型评估-评估指标

  • 分类结果混淆矩阵:

 预测为正例预测为负例
真实正例TP(正确预测为正例)FN(错误预测为负例)
真实负例FP(错误预测为正例)TN(正确预测为负例)
  • 准确率(Accuracy)

                                                                       acc = 预测正确 / 总样本数

                                                                       acc = \frac{TP+TN}{N}

  • 精确率(查准率,Precision)

                                                                       P = 正确预测为正例 / 预测为正例

                                                                       P = \frac{TP}{TP+FP}

  • 召回率(查全率,Recall; 敏感性,TPR

                                                                       R = 正确预测为正例 / 正例总数

                                                                       R = \frac{TP}{TP+FN}

  • 特异性(Specificity, 1- FPR

                                                                       Spe = 正确预测为负例 / 负例总数

                                                                       Spe = \frac{TN}{TN+FP}

                                                                       FPR = 错误预测为正例 / 负例总数

                                                                       FPR = \frac{FP}{TN+FP}

  • F1值--分类问题

                                                                       F1 = \frac{2*P*R}{P+R}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值