-
分类结果混淆矩阵:
预测为正例 预测为负例 真实正例 TP(正确预测为正例) FN(错误预测为负例) 真实负例 FP(错误预测为正例) TN(正确预测为负例)
-
准确率(Accuracy)
acc = 预测正确 / 总样本数
-
精确率(查准率,Precision)
P = 正确预测为正例 / 预测为正例
-
召回率(查全率,Recall; 敏感性,TPR)
R = 正确预测为正例 / 正例总数
-
特异性(Specificity, 1- FPR)
Spe = 正确预测为负例 / 负例总数
FPR = 错误预测为正例 / 负例总数
-
F1值--分类问题
-
ROC曲线以及AUC值--分类问题
- RMSE与MAPE -- 回归问题