机器学习-模型构建-回归分析: MARS 多变量自适应回归样条

MARS(多元自适应回归样条)是处理高维回归问题的一种方法,它扩展了逐步线性回归,并在回归问题中改进了CART的表现。该算法通过一组基函数对输入数据进行展开,类似小波拟合。其求解过程涉及特定的基函数构建。了解更多详情可参考相关文档。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所属类别

多元自适应回归样条(multivariate adaptive regression splines,MARS) 主要处理高维度(待回归项比较多)回归问题。 可将它视为一个对逐步线性回归的推广, 或对 CART 的增强在回归问题中表现的改进。其主要思想类似小波拟合用一系列小波基函数去拟合序列数据)

处理数据类型

输入序列数据x_{i}(t),i=1,2,\cdot \cdot \cdot ,n, 输出y(t)

算法原理

  • 基函数构建

 MARS 算法采用形式为max(0,x-t)max(0,t-x)的两组函数作为基对输入信号

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值