HashMap是使用频率比较高的集合容器。本文将通过一个简单的案例来挖掘HashMap的存储原理。不足之处,还请谅解!
代码案例
- 模拟Entry
package com.tml.collection.map;
import java.util.Map;
/**
* <p>模拟map的键值对entry
* @author Administrator
*
*/
public class MapEntry<K,V> implements Map.Entry<K, V> {
private K key;
private V value;
public MapEntry(K key,V value){
this.key = key;
this.value = value;
}
@Override
public K getKey() {
return this.key;
}
@Override
public V getValue() {
return this.value;
}
@Override
public V setValue(V value) {
V result = this.value;
this.value = value;
//返回之前的value
return result;
}
@Override
public int hashCode() {
return (this.key == null ? 0 : key.hashCode())^
(this.value == null ? 0 : value.hashCode());
}
@SuppressWarnings("rawtypes")
@Override
public boolean equals(Object obj) {
if(!(obj instanceof MapEntry)){
return false;
}
MapEntry entry = (MapEntry) obj;
return (this.key == null ? entry.getKey() == null :this.key.equals(entry.getKey()))&&
(this.value == null ? entry.getValue() == null :this.value.equals(entry.getValue()));
}
@Override
public String toString() {
return this.key+"="+this.value;
}
}
- 模拟HashMap的实现
package com.tml.collection.map;
import java.util.AbstractMap;
import java.util.HashSet;
import java.util.LinkedList;
import java.util.ListIterator;
import java.util.Map;
import java.util.Set;
/**
* <p>HashMap的简单实现
* @author Administrator
*
*/
public class SimpleHashMap<K,V> extends AbstractMap<K, V>{
//桶位的长度
private static final int SIZE = 997;
@SuppressWarnings("unchecked")
LinkedList<MapEntry<K, V>>[] buckets = new LinkedList[SIZE];
public static void main(String[] args) {
SimpleHashMap<String, String> map = new SimpleHashMap<String,String>();
map.put("123", "qaz");
map.put("234", "wsx");
System.out.println(map);
System.out.println(map.get("123"));
System.out.println(map.entrySet());
}
public V put(K key,V value){
V oldValue = null;
int index=Math.abs(key.hashCode()) % SIZE;
if(buckets[index] == null){
buckets[index] = new LinkedList<MapEntry<K, V>>();
}
LinkedList<MapEntry<K, V>> bucket = buckets[index];
MapEntry<K, V> pair = new MapEntry<K, V>(key, value);
boolean found = false;
ListIterator<MapEntry<K, V>> iterator = bucket.listIterator();
while(iterator.hasNext()){
MapEntry<K, V> ipair = iterator.next();
if(ipair.getKey().equals(key)){
oldValue = ipair.getValue();
iterator.set(ipair);
found = true;
break;
}
}
if(!found){
buckets[index].add(pair);
}
return oldValue;
}
public V get(Object key){
int index = Math.abs(key.hashCode()) % SIZE;
if(buckets[index] == null){
return null;
}
for(MapEntry<K, V> ipair : buckets[index]){
if(ipair.getKey().equals(key)){
return ipair.getValue();
}
}
return null;
}
@Override
public Set<Map.Entry<K, V>> entrySet() {
Set<Map.Entry<K, V>> set = new HashSet<Map.Entry<K,V>>();
for(LinkedList<MapEntry<K, V>> bucket :buckets){
if(bucket == null){
continue;
}
for(MapEntry<K, V> mpair : bucket){
set.add(mpair);
}
}
return set;
}
}
- 自定义对象
package com.tml.collection.map;
public class Person {
private String id;
private int age;
private String addres;
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
public String getAddres() {
return addres;
}
public void setAddres(String addres) {
this.addres = addres;
}
public Person(String id) {
super();
this.id = id;
}
/*
* hashcode和equals都是根据id来作为基准的
* @see java.lang.Object#hashCode()
*/
// @Override
// public int hashCode() {
// final int prime = 31;
// int result = 1;
// result = prime * result + ((id == null) ? 0 : id.hashCode());
// return result;
// }
@Override
public boolean equals(Object obj) {
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Person other = (Person) obj;
if (id == null) {
if (other.id != null)
return false;
} else if (!id.equals(other.id))
return false;
return true;
}
}
- equals()/hashCode()方法测试说明
package com.tml.collection.map;
import java.util.Map;
public class EqualsDemo {
public static void main(String[] args) {
Person person=new Person("123");
Map<Person, Integer> map = new SimpleHashMap<Person, Integer>();
map.put(person, 12);
System.out.println(map.get(new Person("123")));//应该得到的是12,但是实际得到的是null
}
}
总结说明
- 存储一组元素最快的数据结构是数组,所以使用数组来存储key的信息.通过key对象生成一个数字作为数组的下标,该下标就是散列码.数组并不直接保存entry,而是保存一个list,因为不同的key可能产生相同的散列码;
- 根据下标找到数组中对应的list,对list中的值使用equals()方法线性查询.因为不是对整个数组进行线性查询,这便是HashMap查询效率比较高的原因;
- HashMap存放元素是根据key值的equals()方法来判断的,实际开发中经常用String作为key,是因为String重写了equals()方法.若想用自己定义的Bean来作为key,必须重写该对象的equals()方法和hashCode()方法;
- 上面的案例Person类中,根据id来判断同一个对象重写了equals()方法,但是没有重写hashCode()方法.导致获取不到对象.根本原因就是:put的时候hashCode()方法产生的值和get的时候产生的hashCode()的值是不一样的.故而存放和取出的数组下标不一样.所以重写equals()方法必须重写hashCode()方法,并且判断的条件也必须一致,比如Person类中判断同一个Person是根据id;
- 根据key值生成散列码,根据散列码找到数组的下标.但是若一个HashMap中的key值产生的散列码比较集中,那么HashMap会在某些区域负载比较重,查询的效率就会随着集合中元素的增加和显著下降.因此,要求散列码分布均匀.散列码的生成是根据hashCode()方法,所以有效重写hasCode()方法至关重要;
- 数组中的元素称为桶位,为使散列分布均匀,桶的数量通常使用质数.但是对于现代处理器来说,除法求余数是最慢的操作.使用2的整数次方长度的散列表,可以用掩码代替除法,可以降低%运算的开销;
- 数组的长度表示容量,数组中存储了多少元素表示尺寸,而尺寸/容量表示负载因子.HashMap使用默认的负载因子是0.75,这个因子在时间代价和空间代价上达到了平衡.更高的负载因子可以降低表所需的空间,但是会增加查找代价.