堆与堆排序

(英语:heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全树。
将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。
堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。
" ki<=k2i,ki<=k2i+1;或ki>=k2i,ki>=k2i+1.(i=1,2,…,[n/2])"
若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。[1]

支持的基本操作

堆支持以下的基本:
  • build:建立一个空堆;
  • insert:向堆中插入一个新元素;
  • update:将新元素提升使其符合堆的性质;
  • get:获取当前堆顶元素的值;
  • delete:删除堆顶元素;
  • heapify:使删除堆顶元素的堆再次成为堆。
某些堆实现还支持其他的一些操作,如斐波那契堆支持检查一个堆中是否存在某个元素。

算法思想

不必将值一个个地插入堆中,通过交换形成堆。假设根的左、右子树都已是堆,并且根的元素名为R。这种情况下,有两种可能:
(1) R的值小于或等于其两个子女,此时堆已完成;
(2) R的值大于其某一个或全部两个子女的值,此时R应与两个子女中值较小的一个交换,结果得到一个堆,除非R仍然大于其新子女的一个或全部的两个。这种情况下,我们只需简单地继续这种将R“拉下来”的过程,直至到达某一个层使它小于它的子女,或者它成了叶结点。
//最小堆的实现
#include <iostream>

using namespace std;

template<class T>
class MinHeap
{
	private:
		T *heap; //元素数组,0号位置也储存元素
		int CurrentSize; //目前元素个数
		int MaxSize; //可容纳的最多元素个数
		void FilterDown(const int start,const int end); //自上往下调整,使关键字小的节点在上
		void FilterUp(int start); //自下往上调整

	public:
		MinHeap(int n=1000);
		~MinHeap();
		bool Insert(const T &x); //插入元素
		T RemoveMin(); //删除最小元素
		T GetMin(); //取最小元素
		bool IsEmpty() const;
		bool IsFull() const;
		void Clear();
};

template<class T>
MinHeap<T>::MinHeap(int n)
{
	MaxSize=n;
	heap=new T[MaxSize];
	CurrentSize=0;
}

template<class T>
MinHeap<T>::~MinHeap()
{
	delete []heap;
}

template<class T>
void MinHeap<T>::FilterUp(int start) //自下往上调整
{
	int j=start,i=(j-1)/2; //i指向j的双亲节点
	T temp=heap[j];
	while(j>0)
	{
		if(heap[i]<=temp)
			break;
		else
		{
			heap[j]=heap[i];
			j=i;
			i=(i-1)/2;
		}
	}
	heap[j]=temp;
}

template<class T>
void MinHeap<T>::FilterDown(const int start,const int end) //自上往下调整,使关键字小的节点在上
{
	int i=start,j=2*i+1;
	T temp=heap[i];
	while(j<=end)
	{
		if( (j<end) && (heap[j]>heap[j+1]) )
			j++;
		if(temp<=heap[j])
			break;
		else
		{
			heap[i]=heap[j];
			i=j;
			j=2*j+1;
		}
	}
	heap[i]=temp;
}

template<class T>
bool MinHeap<T>::Insert(const T &x)
{
	if(CurrentSize==MaxSize)
	return false;
	heap[CurrentSize]=x;
	FilterUp(CurrentSize);
	CurrentSize++;
	return true;
}

template<class T>
T MinHeap<T>::RemoveMin( )
{
	T x=heap[0];
	heap[0]=heap[CurrentSize-1];
	CurrentSize--;
	FilterDown(0,CurrentSize-1); //调整新的根节点
	return x;
}

template<class T>
T MinHeap<T>::GetMin()
{
	return heap[0];
}

template<class T>
bool MinHeap<T>::IsEmpty() const
{
	return CurrentSize==0;
}

template<class T>
bool MinHeap<T>::IsFull() const
{
	return CurrentSize==MaxSize;
}

template<class T>
void MinHeap<T>::Clear()
{
	CurrentSize=0;
}

//最小堆:根结点的键值是所有堆结点键值中最小者。
int main ()
{
	int k,n=11,a[11]={0,5,2,4,9,7,3,1,10,8,6};

	MinHeap<int> test(11);

	for(k=0; k<n; k++)
		test.Insert(a[k]);

	cout<<test.IsFull()<<endl;

	for(k=0;k<n;k++)
		cout<<test.RemoveMin()<<ends;

	cout<<endl;
	return 0;
}
①删除最小堆顶元素后的调整:
将最后一个元素和堆顶元素对换,然后自定向下sift down,如果现在顶端的元素比下方两个子节点的元素大,那么将他和其中小的那个对换,把对调的那个元素看做堆顶,重复刚才的过程,知道达到底部或者中间哪一层发现不需要交换。
②向最小堆插入一个元素后的调整:

=====

一个最小堆,也是完全二叉树,用按层遍历数组表示。

  1.  求节点a[n]的子节点的访问方式
  2.  插入一节点的程序void add_element(int *a,int size,int val);
  3.  删除最小节点的程序。

刚看到的时候觉得挺难的,没有什么思路,原因在于对最小堆的完全二叉树不了解,其实这个二叉树和堆排序时建立的二叉树是一样的。

1、按照数组下标,下标为n的节点,它的子结点下标为2*n+1和2*n+2;

2、插入节点时,先插入到最后,然后再调整堆。

3、删除最小节点即删除根节点,先将根节点和最后一个节点交换,再调整堆。



堆排序算法实现:
#include <stdio.h>
#include <math.h>

inline void swap(int *a, int *b)
{
	int temp = *a;
	*a = *b;
	*b = temp;
}

// array是待调整的堆数组,i是待调整的数组元素的位置,nlength是数组的长度
//本函数功能是:根据数组array构建大根堆
void MaxHeapFixdown(int array[], int i, int nLength)
{
    int temp = array[i];
	// 子结点的位置=2*(父结点位置)+ 1
	int j = 2 * i + 1;
    while ( j < nLength ) {
        
        // 得到子结点中较大的结点
        if ( j < nLength - 1 && array[j] < array[j + 1]) {
            ++ j;
		}

		// 否则退出循环
		if (temp > array[j]) {
			break;
		}

        // 如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点            
		array[i] = array[j];  
		i = j;
		// 子结点的位置=2*(父结点位置)+ 1
		j = 2 *  i + 1;
    }
	// 最后把需要调整的元素值放到合适的位置
	array[i] = temp;
}
 
//array是待调整的堆数组,i是待调整的数组元素的位置,nlength是数组的长度
//从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2 
//本函数功能是:根据数组array构建小根堆
void  MinHeapFixdown(int a[], int i, int n)  
{  
    int temp = a[i];  
    int j = 2 * i + 1;  

    while (j < n) {  

		//在左右孩子中找最小的  
        if (j < n - 1 && a[j + 1] < a[j]) {
			++ j;
		}  

        if (a[j] >= temp) { 
            break; 
		}
  
		//把较小的子结点往上移动,替换它的父结点 
        a[i] = a[j];      
        i = j;  
        j = 2 * i + 1;  
    }  
    a[i] = temp;  
}  

 
// 堆排序算法
void HeapSort(int array[],int length)
{
	int i;
    // 调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素
    //length/2-1是第一个非叶节点,此处"/"为整除
    for ( i = length / 2 - 1; i >= 0; -- i) {
        MaxHeapFixdown(array, i, length);
	}
    // 从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素
    for ( i = length - 1; i > 0; -- i) {
        // 把第一个元素和当前的最后一个元素交换,
        // 保证当前的最后一个位置的元素都是在现在的这个序列之中最大的
        swap(&array[0], &array[i]);
        // 不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值
        MaxHeapFixdown(array, 0, i);
    }
}

double Sqrt(double number) 
{
        if(number<=0)return 0;
        //设置初始值i,i值越接近sqrt(number),所需循环次数越少
        double i = 1; //一个快速算法是:int exp;double i=ldexp(frexp(number,&exp),(exp>>1));
        double j = number/i;
        while((i<j?j-i:i-j) > 1e-9)//随着循环次数的增加,i与j将非常接近
        {
                i = (i+j)/2;
                j = number/i ;
        }
        return i;
}

int main()
{
	/*
	int a[] = {10,1,3,5,111,7,9,0,8,6,4,2,100,11};
	const int len = sizeof (a) / sizeof(int);
	HeapSort(a, len);
	for (int i = 0 ; i < len; ++ i)
	{
		printf("%d  ", a[i]);
	}
	*/  

	const double N = 144;
	printf ("sqrt(%f) = %f\n",N ,Sqrt(N));
	return 0;
}


补充部分:

 堆排序快速排序归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。

二叉堆的定义

二叉堆是完全二叉树或者是近似完全二叉树。

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

堆的操作——插入删除

下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。

堆的插入

每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:

[cpp]  view plain copy
  1. //  新加入i结点  其父结点为(i - 1) / 2  
  2. void MinHeapFixup(int a[], int i)  
  3. {  
  4.     int j, temp;  
  5.       
  6.     temp = a[i];  
  7.     j = (i - 1) / 2;      //父结点  
  8.     while (j >= 0 && i != 0)  
  9.     {  
  10.         if (a[j] <= temp)  
  11.             break;  
  12.           
  13.         a[i] = a[j];     //把较大的子结点往下移动,替换它的子结点  
  14.         i = j;  
  15.         j = (i - 1) / 2;  
  16.     }  
  17.     a[i] = temp;  
  18. }  

更简短的表达为:

[cpp]  view plain copy
  1. void MinHeapFixup(int a[], int i)  
  2. {  
  3.     for (int j = (i - 1) / 2; (j >= 0 && i != 0)&& a[i] > a[j]; i = j, j = (i - 1) / 2)  
  4.         Swap(a[i], a[j]);  
  5. }  

插入时:

[cpp]  view plain copy
  1. //在最小堆中加入新的数据nNum  
  2. void MinHeapAddNumber(int a[], int n, int nNum)  
  3. {  
  4.     a[n] = nNum;  
  5.     MinHeapFixup(a, n);  
  6. }  

堆的删除

按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:

[cpp]  view plain copy
  1. //  从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2  
  2. void MinHeapFixdown(int a[], int i, int n)  
  3. {  
  4.     int j, temp;  
  5.   
  6.     temp = a[i];  
  7.     j = 2 * i + 1;  
  8.     while (j < n)  
  9.     {  
  10.         if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的  
  11.             j++;  
  12.   
  13.         if (a[j] >= temp)  
  14.             break;  
  15.   
  16.         a[i] = a[j];     //把较小的子结点往上移动,替换它的父结点  
  17.         i = j;  
  18.         j = 2 * i + 1;  
  19.     }  
  20.     a[i] = temp;  
  21. }  
  22. //在最小堆中删除数  
  23. void MinHeapDeleteNumber(int a[], int n)  
  24. {  
  25.     Swap(a[0], a[n - 1]);  
  26.     MinHeapFixdown(a, 0, n - 1);  
  27. }  

堆化数组

有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:

很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:

写出堆化数组的代码:

[cpp]  view plain copy
  1. //建立最小堆  
  2. void MakeMinHeap(int a[], int n)  
  3. {  
  4.     for (int i = n / 2 - 1; i >= 0; i--)  
  5.         MinHeapFixdown(a, i, n);  
  6. }  


至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。

堆排序

首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。

由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序

[cpp]  view plain copy
  1. void MinheapsortTodescendarray(int a[], int n)  
  2. {  
  3.     for (int i = n - 1; i >= 1; i--)  
  4.     {  
  5.         Swap(a[i], a[0]);  
  6.         MinHeapFixdown(a, 0, i);  
  7.     }  
  8. }  

注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。

由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。 

注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。

上文补充部分摘自:http://blog.csdn.net/morewindows/article/details/6709644



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值