Apache druid 中提交 hadoop任务 合并segement

简述

在上篇文章中[Apache Druid 0.18.1 compact (合并,压缩) segements] 说明了使用 compact 任务进行合并,压缩segement。
基本上的合并任务compact都可以满足。

但如果遇到比较复杂的需要时,例如需要根据维度,metrics 进行重建时,compact就无法满足需要了。

hadoop 重建任务

{
    "type":"index_hadoop",
    "spec":{
        "dataSchema":{
            "dataSource":"loginlog_1h",
            "parser":{
                "type":"hadoopyString",
                "parseSpec":{
                    "format":"json",
                    "timestampSpec":{
                        "column":"timeStamp",
                        "format":"auto"
                    },
                   "dimensionsSpec": {
                     "dimensions": [
                        "realm_id",
                        "app_id",
						"team_id",
                        "sales_team",
                        "member_id",
                        "member_name"
                    ],
                    "dimensionExclusions": [
                        "timeStamp",
                        "value"
                    ]
                }
                }
            },
             "metricsSpec": [
            {
                "type": "count",
                "name": "count"
            }
        ],
            "granularitySpec":{
                "type":"uniform",
                "segmentGranularity":"DAY",
                "queryGranularity": "HOUR"
                
            }
        },
        "ioConfig":{
            "type":"hadoop",
            "inputSpec":{
                "type":"dataSource",
                "ingestionSpec":{
                    "dataSource":"loginlog_1h",
                    "intervals":[
                         "2019-01-01/2020-01-01"
                    ]
                }
            }
            
        },
		"tuningConfig":{
                "type":"hadoop",
                 "maxRowsInMemory":500000,
                 "partitionsSpec":{
                    "type":"hashed",
                    "targetPartitionSize":5000000
                },
                "numBackgroundPersistThreads":1,
                 "forceExtendableShardSpecs":true,
                "jobProperties":{
				"mapreduce.job.local.dir":"/home/druid/mapred",
                "mapreduce.cluster.local.dir":"/home/mapred",
                	"mapred.job.map.memory.mb":4300,
                	"mapreduce.reduce.memory.mb":4300
                
                }
               
            }
    }
}

hadoop 任务 与compact 任务对比

在较小的任务,不涉及数据重建的情况下建议使用compact.如果数据量比较大则建议使用hadoop任务。

任务提交地址
http://overlord:port/druid/indexer/v1/task

参考资料

https://druid.apache.org/docs/latest/ingestion/hadoop.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值