题目:点击打开链接
题意:圆上n个点任意连线,最多分成多少个区域。
分析:首先在圆上去n个点,要是n个点产生的区域数最大,就必须是任意3条直线不交于一点。也就是圆内任意一点最多只有两条直线经过。在圆上的n个点会连出C(n,2)条直线。任意一个圆内交点都可以有圆上四点构成的四元组唯一对应,那么无序四元组的个数为C(n,4),也是交点个数。如果把圆看成一张图(圆弧也是边),点数有n+C(n,4),边数有C(n,2)+2C(n,4)+n,根据欧拉公式有F=E-V+2=C(n,4)+C(n,2)+2,扣掉圆外区域,答案为C(n,4)+C(n,2)+1。n比较大,注意防止溢出。
代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<string>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<set>
#include<map>
using namespace std;
#define debug test
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define ll long long
#define ull unsigned long long
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
typedef pair<int,int> PII;
const ll mod = 1e9+7;
const int N = 1e6+10;
ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
ll qp(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int to[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
ll n,ans,t;
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin>>t;
for(int i=1;i<=t;i++) {
cin>>n;
ans = (1+n%mod*((n-1)%mod)%mod*qp(2,mod-2)%mod+n%mod*((n-1)%mod)%mod*((n-2)%mod)%mod*((n-3)%mod)%mod*qp(24,mod-2)%mod)%mod;
cout<<"Case #"<<i<<": "<<ans<<endl;
}
return 0;
}