题目:点击打开链接
题意:略。
分析:(lca+100次最短路)先把题目给的边存起来,先取n-1个边(不能有环)构成生成树,然后求lca,对于漏掉的边u<-->v,假设x到y的最短路不走这条边,那么其最短路有可能是lca的距离,假设走这条边,必走u,那么我先求出起点为u到所有点的最短路,x到y的距离就是min(lca , d[u][x]+d[u][y])。(不明白的可以画个草图)由于边权都为1,所以最短路用bfs就好了,lca我这里用的是倍增法。
代码:
#pragma comment(linker, "/STACK:102400000,102400000")
#include<unordered_map>
#include<unordered_set>
#include<algorithm>
#include<iostream>
#include<fstream>
#include<complex>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iomanip>
#include<string>
#include<cstdio>
#include<bitset>
#include<vector>
#include<cctype>
#include<cmath>
#include<ctime>
#include<stack>
#include<queue>
#include<deque>
#include<list>
#include<set>
#include<map>
using namespace std;
#define pt(a) cout<<a<<endl
#define debug test
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pii pair<int,int>
#define fi first
#define se second
#define ll long long
#define ull unsigned long long
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
#define eps 1e-10
#define PI acos(-1.0)
const ll mod = 1e9+7;
const int N = 1e5+10;
ll qp(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
int to[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
int n,m,q,d[110][N],p[N],vs[N],dep[N],fa[N][20];
vector<int> g[N];
struct nd{
int u,v,vis;
}e[N+100];
void init() {
for(int i=1;i<=n;i++) g[i].clear();
for(int i=1;i<=n;i++) p[i]=i;
mst(d,0),mst(vs,0),mst(dep,0),mst(fa,0);
for(int i=1;i<=m;i++) e[i].vis=0;
}
int fd(int x) {
while(x!=p[x])
x=p[x];
return x;
}
void dfs(int x) {
vs[x]=1;
for(int i=0;i<g[x].size();i++) {
int v=g[x][i];
if(vs[v]) continue;
dep[v]=dep[x]+1;
fa[v][0]=x;
dfs(v);
}
}
void bz() {
for(int j=1;j<20;j++)
for(int i=1;i<=n;i++)
fa[i][j]=fa[fa[i][j-1]][j-1];
}
int lca(int u,int v) {
if(dep[u]<dep[v]) swap(u,v);
int d=dep[u]-dep[v];
for(int i=0;i<20;i++)
if(d&(1<<i)) u=fa[u][i];
if(u==v) return u;
for(int i=19;i>=0;i--) {
if(fa[u][i]!=fa[v][i]) {
u=fa[u][i];
v=fa[v][i];
}
}
return fa[u][0];
}
void bfs(int s,int id) {
int vis[N];
mst(vis,0);
queue<int> q;
q.push(s);
vis[s]=1;
d[id][s]=0;
while(!q.empty()) {
int tp=q.front(); q.pop();
for(int i=0;i<g[tp].size();i++) {
int u=g[tp][i];
if(!vis[u]) {
vis[u]=1;
d[id][u]=d[id][tp]+1;
q.push(u);
}
}
}
}
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
while(~scanf("%d%d",&n,&m)) {
init();
for(int i=1;i<=m;i++) {
scanf("%d%d",&e[i].u,&e[i].v);
int x=fd(e[i].u),y=fd(e[i].v);
if(x!=y) e[i].vis=1,p[x]=y,g[e[i].u].pb(e[i].v),g[e[i].v].pb(e[i].u);
}
dep[1]=0;
dfs(1);
bz();
for(int i=1;i<=m;i++) {
if(!e[i].vis) {
g[e[i].u].pb(e[i].v);
g[e[i].v].pb(e[i].u);
}
}
int k=1;
for(int i=1;i<=m;i++) {
if(!e[i].vis) {
bfs(e[i].u,k);
k++;
}
}
scanf("%d",&q);
for(int i=1;i<=q;i++) {
int u,v,ans;
scanf("%d%d",&u,&v);
ans=dep[u]+dep[v]-2*dep[lca(u,v)];
for(int j=1;j<k;j++)
ans=min(ans,d[j][u]+d[j][v]);
printf("%d\n",ans);
}
}
return 0;
}