UVA 12170 Easy Climb(dp+单调队列优化)

题意:给出一个序列,首尾不可改变,要求你使序列满足相邻2个|x_i - x_(i-1)| <=d,改变的代价就是两数相减绝对值,问最小代价。

分析:

区间dp类问题,根据题意,我们需要修改2到n-1之间的一些h的值,使得相邻2个h值差的绝对值不超过d。因为可以修改的数是一个实数,无法一一枚举,因此需要仔细对问题进行分析。

首先,考虑只有3个值的情况:h1, h2, h3。那么根据题意,h2应该在区间[h1-d,h1+d]和[h3-d,h3+d]之间,即h1应该在[max(h1,h3)-d,min(h1,h3)+d]之间。如果这个区间是空集,即abs(h3-h1)>(3-1)*d,那么自然无解,否则,如果h2就在区间内部,那么不需要修改;如果h2<max(h1,h3)-d,那么就修改为max(h1,h3)-d;如果h2>min(h1,h3)+d,那么就修改为min(h1,h3)+d。可以发现,在这个简单的问题中,h2的最优修改方案只有这3种情况。并且我们还发现了,如果要修改,一定是修改成形如hp+k*d的形式。

接下来我们考虑有n个值的情况,根据类似的推理可以得出:如果abs(hn-h1)>(n-1)*d时候,一定无解。如果满足这个条件,那么中间的每个数字要么不变,要么变成形如hp+k*d的形式。由于abs(hn-h1)<=(n-1)*d。那么k的取值范围最大就是[-n+1,n-1],一共有2n-1种情况,另外,p的取值范围是[1,n],即hp+k*d一共有O(n^2)种情况。设dp(i,x)表示已经修改了i-1个数,第i个数改成x时候还需要的最小费用。那么不难得到如下的状态转移方程:

dp(i,x)=abs(hi-x)+min{dp(i-1,y)|abs(x-y)<=d};

上述方程表示:当固定了i,x的时候,我们需要考察在区间[x-d,x+d]中的所有y值,并选出其中最小的那个dp值。这样,需要O(d)时间确定一个状态,而所有的状态一共有O(n^3)种,因此总的时间复杂度会高达O(N^4)。这时需要用单调队列来加以优化:先把区间[x-d,x+d]看做一个固定的区间,区间长度恒为2d,那么问题就转化为求在该区间内的最小值,如果我们从小到大枚举x,那么问题就转化为了求一个长度为2d的滑动区间的最小值,这正可以用单调队列加以解决,求出每个滑动窗口的最小值的平摊复杂度为O(1),即我们最终只需要O(1)时间即可确定出最小值,那么总的时间复杂度降为O(N^3),可以在时间限制内加以解决。

最后说一点:虽然说是用单调队列来求每个滑动窗口的最小值,然而再深入分析一步就会发现一个规律,每次算完一个阶段后,该阶段的dp序列呈现的是一个先下降,后上升的趋势,而且下降时候的最低点一定是整个序列的最低点。(因为合法的区间中最中间的值费用是最小的,往左右走都会越来越偏离最优解,单调性为先减后增)这样,我们只需要一个front指针即可维护优先队列了。

参考:https://blog.csdn.net/u014800748/article/details/49024143

总结:前后关联的训练序列问题一般可以用区间dp来解决,基本都是定义dp[i][j]前i个数以j为结尾的...。这题细节很多,用到了很多技巧和方法,收获不少,很好的一道题,还得回过头来研究。

LRJ代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn = 100 + 5;
const int maxx = maxn*maxn*2;
const LL  INF = (1LL << 60);
LL h[maxn], x[maxx], dp[2][maxx];

int main () {
  int T;
  cin >> T;
  while(T--) {
    int n;
    LL d;
    cin >> n >> d;
    for(int i = 0; i < n; i++) cin >> h[i];
    if(abs(h[0] - h[n-1]) > (n-1)*d) {
      cout << "impossible\n";
      continue;
    }
    // useful heights
    int nx = 0;
    for(int i = 0; i < n; i++)
      for(int j = -n+1; j <= n-1; j++)
        x[nx++] = h[i] + j*d;// 把所有可能用到的修改结果都存放到x数组中
    sort(x, x+nx);
    nx = unique(x, x+nx) - x;//将x数组从小到大排序并去重,那么0...nx-1之间的所有数就是修改时候可能用到的结果
    // dp
    int t = 0;//因为只有奇,偶两种变化,且i只依赖于i-1时候的情况,因此可以用滚动数组优化
    for(int i = 0; i < nx; i++) {
      dp[0][i] = INF;
      if(x[i] == h[0]) dp[0][i] = 0;//初始化时候,只有恰好等于h0时候费用为0,其他均为INF
    }
    for(int i = 1; i < n; i++) {
      int k = 0;//单调队列的front指针
      for(int j = 0; j < nx; j++) {//从小到大枚举x值,因为所有需要用到的x值都在x数组中,因此等价于枚举下标
        while(k < nx && x[k] < x[j]-d) k++;//找到第一个符合条件的x[k]
        while(k+1 < nx && x[k+1] <= x[j]+d && dp[t][k+1] <= dp[t][k]) k++; //min in sliding window 第i处的x值为x[j],如果不符合后者>前者,那么就出队列
        if(dp[t][k] == INF) dp[t^1][j] = INF; // (t, k) is not reachable 最小的那个dp[t][k]不存在,那么新的状态也不存在
        else dp[t^1][j] = dp[t][k] + abs(x[j] - h[i]); //得到x[j]处对应的最小值
      }
      t ^= 1;//更新为当前状态
    }
    for(int i = 0; i < nx; i++)
      if(x[i] == h[n-1]) cout << dp[t][i] << "\n";
  }
  return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值