求解a的N次方根

文章目录

牛顿迭代法

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ∗ ( x − x 0 ) f(x) = f(x_0)+f^{'}(x_0)*(x-x_0) f(x)=f(x0)+f(x0)(xx0)

假设 f ( x ) = x N − a = 0 f(x)=x^N-a=0 f(x)=xNa=0,取N=2,得到
f ( x ) = x 2 − a f ′ ( x ) = 2 x f(x)=x^2-a \quad f^{'}(x)=2x f(x)=x2af(x)=2x
f ( x ) = x 0 2 − a + 2 x 0 ( x − x 0 ) = 0 f(x)=x_0^2-a+2x_0(x-x_0)=0 f(x)=x02a+2x0(xx0)=0
x = 1 2 ( x 0 + a x 0 ) x=\frac12(x_0+\frac{a}{x_0}) x=21(x0+x0a)
通过迭代可以逼近算出真实值。

对应任意的N,计算公式为
x n + 1 = 1 N ( ( N − 1 ) x n + a x n N − 1 ) x_{n+1} = \frac1N((N-1)x_n+\frac{a}{x_n^{N-1}}) xn+1=N1((N1)xn+xnN1a)

分析:
Newton迭代法求单根时,收敛速度很快(平方收敛)。
但如果方程根是重根,则收敛速度较慢,且重数越高速度越慢

代码:

#include <cmath>
#include <iostream>
#include <iomanip>
using namespace std;

double Newton(double x, int N, double delta) {
    if (x <= 0 || N <= 0) {
        return 0;
    }
    double x0 = 1;
    double x1 = ((N - 1) + x) / N;;

    while (abs(x1 - x0) > delta) {
        x0 = x1;
        x1 = ((N - 1)*x0 + x / pow(x0, N - 1)) / N;
    }
    return x1;
}

const double DELTA = 0.0000001;
int main() {

    cout << setprecision(20) << Newton(2, 2, DELTA) << endl;
    cout << setprecision(20) << Newton(8, 1, DELTA) << endl;
    cout << setprecision(20) << Newton(8, 2, DELTA) << endl;
    cout << setprecision(20) << Newton(8, 3, DELTA) << endl;
    cout << setprecision(20) << Newton(8, 4, DELTA) << endl;
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值