两个数组的中位数

 

Code:
  1. #include <iostream>  
  2. using namespace std;  
  3.   
  4. void sort(int x[], int n)  
  5. {  
  6.     int temp;  
  7.     int i;  
  8.     int j;  
  9.       
  10.     for (i = 1; i < n; ++i)  
  11.     {  
  12.         temp = x[i];  
  13.         for (j = i - 1; j >= 0; --j)  
  14.         {  
  15.             if (x[j] > temp)  
  16.             {  
  17.                 x[j + 1] = x[j];  
  18.             }  
  19.             else  
  20.             {  
  21.                 break;  
  22.             }  
  23.         }         
  24.         x[j + 1] = temp;  
  25.     }  
  26. }  
  27.   
  28. int median(int x[], int y[], int n)  
  29. {  
  30.     int first_x = 0;  
  31.     int first_y = 0;  
  32.     int last_x = n - 1;  
  33.     int last_y = n - 1;  
  34.     int count = 0;  
  35.     int mid_x;  
  36.     int mid_y;  
  37.       
  38.     int z[4];  
  39.       
  40.     while (last_x - first_x > 1 || last_y - first_y > 1)  
  41.     {  
  42.         mid_x = (first_x + last_x) / 2;  
  43.         mid_y = (first_y + last_y) / 2;  
  44.           
  45.         if (x[mid_x] <= y[mid_y])  
  46.         {  
  47.             count += (mid_x - first_x);  
  48.             first_x = mid_x;  
  49.             last_y = mid_y;  
  50.         }  
  51.         else  
  52.         {  
  53.             count += (mid_y - first_y);  
  54.             first_y = mid_y;  
  55.             last_x = mid_x;  
  56.         }  
  57.     }  
  58.       
  59.     int number;  
  60.     for (number = 0; first_x <= last_x; ++first_x)  
  61.     {  
  62.         z[number++] = x[first_x];  
  63.     }  
  64.       
  65.     for (; first_y <= last_y; ++first_y)  
  66.     {  
  67.         z[number++] = y[first_y];  
  68.     }  
  69.       
  70.     sort(z, number);  
  71.       
  72.     return z[n - count - 1];  
  73. }  
  74.   
  75. int main(int argc, char *argv[])  
  76. {  
  77.       
  78.     return 0;  
  79. }  

 

假设有两个有序数组 nums1 和 nums2,长度分别为 m 和 n。要求找到这两个数组中位数,时间复杂度要求为 O(log(m+n))。 一种思路是利用归并排序的思想,将两个有序数组合并成一个有序数组,然后找到中位数。 具体步骤如下: 1. 初始化两个指针 i 和 j,分别指向 nums1 和 nums2 的起始位置。 2. 判断两个指针所指元素的大小关系,将较小的元素加入到一个新的数组中,并将指针向后移动一位。 3. 重复步骤 2,直到任意一个指针越界。 4. 判断剩余数组的长度,将剩余的元素加入到新的数组中。 5. 找到新数组中位数,如果新数组长度为偶数,则取中间两个数的平均值,如果长度为奇数,则取中间的数。 代码实现如下: ``` double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); int total = m + n; vector<int> nums(total); int i = 0, j = 0, k = 0; while (i < m && j < n) { if (nums1[i] < nums2[j]) { nums[k++] = nums1[i++]; } else { nums[k++] = nums2[j++]; } } while (i < m) { nums[k++] = nums1[i++]; } while (j < n) { nums[k++] = nums2[j++]; } if (total % 2 == 0) { return (nums[total / 2 - 1] + nums[total / 2]) / 2.0; } else { return nums[total / 2]; } } ``` 时间复杂度为 O(m+n),不符合题目要求。可以使用二分查找的方法将时间复杂度优化到 O(log(m+n))。 具体思路如下: 1. 假设两个有序数组的长度分别为 m 和 n,将 nums1 分为部分,前一部分包含 i 个元素,后一部分包含 m-i 个元素;将 nums2 分为部分,前一部分包含 j 个元素,后一部分包含 n-j 个元素。 2. 如果中位数两个数组的左半部分,那么 i 和 j 都需要向右移动;如果在右半部分,i 和 j 都需要向左移动;如果 i 和 j 恰好满足条件,则找到了中位数。 3. 不断重复步骤 2,直到找到中位数。 代码实现如下: ``` double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) { int m = nums1.size(), n = nums2.size(); if (m > n) { swap(nums1, nums2); swap(m, n); } int left = 0, right = m, halfLen = (m + n + 1) / 2; while (left <= right) { int i = (left + right) / 2; int j = halfLen - i; if (i < m && nums2[j-1] > nums1[i]) { left = i + 1; } else if (i > 0 && nums1[i-1] > nums2[j]) { right = i - 1; } else { int maxLeft = 0; if (i == 0) { maxLeft = nums2[j-1]; } else if (j == 0) { maxLeft = nums1[i-1]; } else { maxLeft = max(nums1[i-1], nums2[j-1]); } if ((m + n) % 2 == 1) { return maxLeft; } int minRight = 0; if (i == m) { minRight = nums2[j]; } else if (j == n) { minRight = nums1[i]; } else { minRight = min(nums1[i], nums2[j]); } return (maxLeft + minRight) / 2.0; } } return 0.0; } ``` 时间复杂度为 O(log(min(m,n)))。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值