python egg-info vs dist-info

Python中的egg-info和dist-info文件夹存储包元数据。egg-info是早期的格式,用于描述egg安装包,而dist-info是Python3.3后的标准,适用于wheel和源码包,包含更多元数据信息。目前大部分Python包已转向使用dist-info格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 Python 中,egg-info 和 dist-info 文件夹都是用于描述和管理 Python 包的元数据的文件夹。

egg-info 是 Python 早期的包格式,用于描述 egg 安装包的元数据。这些元数据包括包的名称、版本号、依赖项和作者信息等。当使用 easy_install 安装 Python 包时,会将这些元数据信息存储在 egg-info 文件夹中。

而 dist-info 是 Python 3.3 之后新增的包格式,用于描述 wheel 包和源码包的元数据。这些元数据同样包括包的名称、版本号、依赖项和作者信息等。与 egg-info 不同的是,dist-info 文件夹中还包含了一些其他的元数据信息,如包的 hash 值、入口点、文件列表等。

总的来说,dist-info 是 Python 3.3 之后的标准包格式,用于描述 wheel 包和源码包的元数据。而 egg-info 是 Python 早期的包格式,用于描述 egg 安装包的元数据。但是,现在大部分 Python 包都已经转向使用 dist-info 格式了。

error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [61 lines of output] D:\py_workplace\.venv\lib\site-packages\setuptools\dist.py:760: SetuptoolsDeprecationWarning: License classifiers are deprecated. !! ******************************************************************************** Please consider removing the following classifiers in favor of a SPDX license expression: License :: OSI Approved :: MIT License See https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#license for details. ******************************************************************************** !! self._finalize_license_expression() No CUDA runtime is found, using CUDA_HOME='C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2' running egg_info creating C:\Users\王婉婷\AppData\Local\Temp\pip-pip-egg-info-3w7fh0ig\torch_sparse.egg-info writing C:\Users\王婉婷\AppData\Local\Temp\pip-pip-egg-info-3w7fh0ig\torch_sparse.egg-info\PKG-INFO writing dependency_links to C:\Users\王婉婷\AppData\Local\Temp\pip-pip-egg-info-3w7fh0ig\torch_sparse.egg-info\dependency_links.txt writing requirements to C:\Users\王婉婷\AppData\Local\Temp\pip-pip-egg-info-3w7fh0ig\torch_sparse.egg-info\requires.txt writing top-level names to C:\Users\王婉婷\AppData\Local\Temp\pip-pip-egg-info-3w7fh0ig\torch_sparse.egg-info\top_level.txt writing manifest file 'C:\Users\王婉婷\AppData\Local\Temp\pip-pip-egg-info-3w7fh0ig\torch_sparse.egg-info\SOURCES.txt' Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "C:\Users\王婉婷\AppData\Local\Temp\pip-install-ua6e5g81\torch-sparse_095dcd54709e499781378fa94343f0c5\setup.py", line 147, in <module> setup( File "D:\py_workplace\.venv\lib\site-packages
最新发布
03-26
<think>嗯,用户遇到了一个错误,提示是“subprocess-exited-with-error”,具体是在安装某个Python包的时候出现的,尤其是和torch-sparse相关的问题。首先,我需要分析错误信息中的关键点。 错误信息里提到了CUDA的问题,说没有找到CUDA runtime,但指定了CUDA_HOME的路径。这说明用户可能在安装需要CUDA支持的库,但系统没有正确配置CUDA环境。不过用户的环境是Windows,CUDA的路径是v11.2,这可能和安装的PyTorch版本不兼容? 接下来,用户可能尝试直接通过pip安装torch-sparse,但因为这个库需要编译,而Windows下编译环境可能缺少必要的工具,比如C++构建工具或者CUDA工具包。这时候通常会建议用户安装预编译的版本,比如通过PyTorch官方推荐的渠道。 然后看到错误中有提到SetuptoolsDeprecationWarning,关于License分类器的警告,但这不是导致安装失败的主要原因,可能只是警告信息。真正的错误可能在后面的traceback,但日志没有显示具体的错误行,可能是权限问题或者路径中有中文字符? 注意到用户的临时路径中有中文用户名“王婉婷”,这可能导致某些文件处理时出现编码问题,尤其是在Windows系统上,部分工具对非ASCII路径支持不好,导致文件读写失败。这种情况下,建议用户将Python环境安装在纯英文路径下,或者修改临时目录的环境变量。 另外,torch-sparse是PyTorch Geometric的一部分,通常需要安装对应的CUDA版本。用户需要确认PyTorch版本和CUDA版本是否匹配。例如,PyTorch 1.8.0+cu111需要CUDA 11.1,而用户这里显示的是CUDA 11.2,可能存在版本不一致的问题。 可能的解决步骤包括:安装Microsoft Visual C++ Build Tools,确保CUDA环境变量正确,使用conda安装预编译的包,或者指定正确版本的torch-sparse。此外,用户可能需要使用--no-cache-dir选项来避免缓存问题,或者更换安装源。 最后,如果所有方法都失败,可能需要考虑在Linux子系统下安装,或者使用Docker容器来规避Windows下的路径和编译问题。不过这可能对用户来说比较复杂,需要一步步指导。</think>这个错误通常出现在安装需要编译的Python库(如`torch-sparse`)时,由于环境配置、依赖缺失或版本冲突导致。以下是分步解决方案: --- ### **1. 核心问题定位** 错误信息显示: - **CUDA未正确配置**:检测到`CUDA_HOME=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2`,但未找到匹配的运行时库。 - **路径含中文字符**:临时文件路径`C:\Users\王婉婷\...`可能导致某些工具链无法正确处理。 - **依赖库编译失败**:`torch-sparse`需要本地编译,但缺少必要组件。 --- ### **2. 解决方案** #### **(1) 安装CUDA和cuDNN** - **检查CUDA与PyTorch版本兼容性**: - 若使用PyTorch,需确保CUDA版本匹配。例如: ```bash # PyTorch 2.0 + CUDA 11.8 pip install torch==2.0.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118 ``` - 从[NVIDIA官网](https://developer.nvidia.com/cuda-toolkit-archive)下载对应版本的CUDA Toolkit和cuDNN。 #### **(2) 修复路径问题** - **修改临时目录(避免中文字符)**: ```bash # 在cmd中设置临时目录为英文路径 set TMP=C:\Temp set TEMP=C:\Temp ``` - **创建纯英文Python虚拟环境**: ```bash python -m venv C:\path\to\pure_english_path\env ``` #### **(3) 安装编译工具** - **安装Visual Studio Build Tools**: - 勾选 **C++桌面开发工具** 和 **Windows 10/11 SDK**([下载地址](https://visualstudio.microsoft.com/visual-cpp-build-tools/))。 #### **(4) 安装预编译的torch-sparse** - **通过PyPI指定版本**: ```bash pip install torch-sparse -f https://data.pyg.org/whl/torch-2.0.0+cu118.html ``` > 将URL中的`cu118`替换为你的CUDA版本(如`cu102`)。 - **使用conda安装**: ```bash conda install pyg -c pyg ``` #### **(5) 手动安装(进阶)** ```bash # 清理缓存后重新安装 pip install torch-sparse --no-cache-dir --verbose ``` --- ### **3. 验证安装** ```python import torch from torch_sparse import SparseTensor print(torch.cuda.is_available()) # 应输出True ``` --- ### **4. 备用方案** 若仍失败,可尝试: - 在WSL2(Windows Subsystem for Linux)中安装。 - 使用Docker镜像(如`pytorch/pytorch:latest`)。 --- ### **附:常见版本对照表** | PyTorch版本 | 推荐CUDA版本 | torch-sparse版本 | |------------|--------------|------------------| | 2.0.0 | 11.8 | 0.6.16 | | 1.13.0 | 11.7 | 0.6.15 | | 1.9.0 | 11.1 | 0.6.12 | 根据实际环境调整参数,通常可解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值