题意:
给你一张图,无自环,有重边。每个点都有一个值,0,1,-1,0是要求这个点连的边有偶数个,包括0,1表示这个点连的边有奇数个,-1表示无要求,之后给你m条边,最后问你留下哪些边可以满足要求。
题解:
很明显可以看出来,当有奇数个1且没有-1的时候是不可能的,因为要满足奇数条边连向一个点,那么只有使得奇数的点两两相连,最后悔剩下一个奇数的点,这个点无论怎么练都会破坏其它点的关系。
那么由于它是连通图,当它有偶数个1的时候是必然能够所有1两两相连的,如果有奇数个1和若干个-1,只需要使得其中的一个-1变成1即可。那么怎么连?我们肯定是要连两个1使得这两个1之后不在任何的两个1中间:
如果我们开始的时候连了中间的两个1了,那么之后就不好连,如果硬做的话肯定是会t的。那么我们怎么找最旁边的两个1?我们用一个vis数组记录当前访问了那些点,之后就不会再访问,也就是当成一棵树来做。最后一个1 returen的是1,回溯的时候改变当前点的值,也就是异或=1,那么到下一个1了他的值就变成0,然后返回的就是0.返回1的时候我们直接加入答案,因为只有一个1的话肯定是要找到另一个点,并且dfs下去找不到点了,所以肯定是在别的地方,这样就做完了。
#include<bits/stdc++.h>
using namespace std;
const int N=3e5+5;
struct node
{
int to,next,id;
}e[N*2];
int cnt,head[N];
void add(int x,int y,int id)
{
e[cnt].to=y;
e[cnt].next=head[x];
e[cnt].id=id;
head[x]=cnt++;
}
int a[N],vis[N];
vector<int>ans;
int dfs(int x,int fa)
{
vis[x]=1;
for(int i=head[x];~i;i=e[i].next)
{
int ne=e[i].to;
if(ne==fa||vis[ne])
continue;
int aa=dfs(ne,x);
if(aa)
ans.push_back(e[i].id),a[x]^=1;
}
return a[x];
}
int main()
{
memset(head,-1,sizeof(head));
int n,m;
scanf("%d%d",&n,&m);
int sta=0,neg=0,odd=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]==1)
sta=sta?sta:i,odd++;
if(a[i]==-1)
neg=neg?neg:i;
}
int x,y;
for(int i=1;i<=m;i++)
scanf("%d%d",&x,&y),add(x,y,i),add(y,x,i);
if(odd%2&&!neg)
return 0*printf("-1\n");
neg=odd%2?neg:0;
for(int i=1;i<=n;i++)
if(a[i]==-1)
a[i]=i==neg?1:0;
if(sta)
dfs(sta,0);
printf("%d\n",ans.size());
for(int i=0;i<ans.size();i++)
printf("%d\n",ans[i]);
return 0;
}