目标跟踪方法--Mean Shift 算法

 一、概述

    Mean-Shift,即均值向量偏移,该理论是一种无参数密度估计算法,最早由 Fukunaga 等人于1975年提出。cheng等人对基本的 Mean-Shift 算法进行了改进,一方面将核函数引入均值偏移向量,使得随着样本与被偏移点的距离不同,对应的偏移量对均值偏移向量的贡献也不同;另一方面,设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了 Mean-Shift 的适用范围,引起了国内外学者的关注,被广泛应用到模式分类、图像分割及目标跟踪等方面。将 Mean-Shift 算法应用到非刚体目标的跟踪,获得了较好的效果;利用多个颜色空间的特征建模以加强对目标的描述,在跟踪的准确性上有很大的提高,但因每帧都要估计最佳特征组合,计算复杂,影响了算法的实时性。

    Mean-Shift 跟踪算法是一个迭代过程,它是基于特征的跟踪算法的一种。在初始化的时候要手工标定待跟踪的目标区域,然后计算该区域内的颜色直方图分布,作为目标模板:在后续帧中以上一帧的目标位置为起始中心位置,目标长宽的一半分别作为搜索窗口的长宽,计算窗口区域内的颜色直方图分布,作为候选目标。利用相似度量Bhattacharyya 系数评价目标模型和当前帧候选目标的相似程度,该系数越大表明候选目标与目标模型越相似。而均值偏移向量就是指向 Bhattacharyya系数增大的方向,通过不断迭代计算均值偏移向量,在当前帧中,当该系数达到最大时,目标中心即收敛到目标的真实位置,从而达到跟踪的目的。

二、算法具体内容

    (1)目标模板表示

    当手工标定好目标区域后,对该区域内的所有像素点{Xi(x,y)}i=1,2,3..,以点(O,O)为中心,计算核函数加权的颜色直方图分布,将该分布作为目标模板。

    (2)候选目标表示

    假设在上一帧中目标的中心为Yj,在当前帧,将Yj作为起始位置,初始化候选目标中心的位置。适当扩大目标的搜索范围,定义h为搜索窗口的大小,也可称为核函数带宽(包括长度和宽度,分别为目标长度和宽度的一半,h(x,y)。这里的h是一个固定值,即跟踪过程中搜索窗口的大小是不变的,这导致 Mean-Shift跟踪算法在跟踪过程中不能适应目标尺寸的变化,对大小有改变的目标产生定位不准确。

    (3)相似度量

     相似度量函数用于描述目标模型颜色直方图和候选目标区域颜色直方图分布之间的相似程度。可使用Bhattacharyya 系数描述两个概率分布之间的相似程度,定义为公式(4.18),值在O到1之间,越大表示两个分布越相似。再根据公式(4.19)即可得到两个颜色分布之间的距离。

            

    (4)搜索策略

    搜索即为 Mean-Shift 迭代过程,迭代在初始位置取上一帧中目标的中心位置,在当前帧该位置邻域,通过不断计算均值偏移向量,使中心位置沿 Bhattacharyya系数增大的方向移动。从公式(4.19)中可以看到,Bhattacharyya系数增加,即是使两个分布的距离减小。因此,当均值偏移向量收敛时,即找到目标模型与候选目标颜色概率分布的距离达到最小时的中心位置Y,此时停止迭代。理想情况下,该中心位置即为目标所在位置

    (5)算法性能

    Mean-Shift 跟踪算法在目标跟踪领域具有算法简洁,实时性好,算法框架化等优点,采用核函数加权处理,能够解决目标部分遮挡等情况,对目标的旋转、变形以及背景变化都不敏感,具有很大的实用价值。但也存在着不足:第一,目标模型仅采用颜色特征,缺乏目标空间信息,对目标的描述不充分,当目标附近有颜色特征相近的干扰物存在时,不足以区分出目标,易发生错误定位。第二,跟踪过程中搜索窗口大小保持不变,当目标的尺寸在跟踪过程中发生变化时,定位目标的矩形框大小并不会依据目标的大小改变,造成定位不准确;第三,目标模板没有对






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值