目标跟踪方法
tiemaxiaosu
这个作者很懒,什么都没留下…
展开
-
目标跟踪方法--基于特征跟踪
一、理论 该方法的基本思想是目标可以用一组恒定不变的特征集合来表达。基于目标特征的跟踪方法,并不是将目标作为一个整体进行跟踪的,而是在连续帧图像中匹配并跟踪一组特征点(如边界线条、质心、角点等)。基于特征的跟踪方法主要包括特征的提取和匹配两个环节。 该类跟踪方法的主要优点是:即使场景中的目标出现了部分遮挡的情况,只要特征点可见,就可以实现对目标的持续跟踪。Niyog转载 2016-06-24 09:25:01 · 7665 阅读 · 0 评论 -
目标跟踪方法--基于轮廓跟踪
一、理论 该方法的基本思想是使用一组封闭的轮廓曲线来表征目标,将曲线作为模板,在相邻帧的边缘图像中匹配并跟踪该模板。该方法与基于区域的跟踪方法相类似,都存在目标模板匹配和目标模板更新两个环节,但是该方法是在二值化图像中匹配目标的轮廓模板,大大减小了计算量,提高了匹配的速度。 主动轮廓模型方法是近些年来发展较快的一类轮廓匹配跟踪方法。 Michael Kass 等转载 2016-06-24 09:25:25 · 9127 阅读 · 0 评论 -
目标跟踪方法--基于区域跟踪
一、理论 该方法的基本思想是将检测阶段获得的活动区域作为匹配的模板,在系统中设定一个匹配度量值;在相邻帧图像中,全图搜索匹配模板,匹配度量值取极值的位置就是最佳的匹配点。通常对于彩色图像序列而言,可采用基于颜色信息的匹配方法;而对于灰度图像序列而言,可采用基于特征和纹理信息的匹配度量方法。 匹配度量值和搜索算法是影响该类算法性能的主要因素。基于区域的跟踪方法还可以与多种预转载 2016-06-24 09:25:48 · 6032 阅读 · 0 评论 -
目标跟踪方法--基于模型跟踪
一、概述 在实际的监控场景中,一般用三种模型来描述人的运动:线图模型(StickFigures Model) 、 二维轮廓模型 (2D Contours Model) 和立体模型(Volumetric Model)。 1、线图模型 线图模型法认为,人在场景中运动的实质就是人体骨骼的运动。因此可以将人的肢体用不同的直线来模拟。转载 2016-06-24 09:26:14 · 6811 阅读 · 0 评论 -
目标运动方向判断
一、原理 在有些场合由于需要检测目标的运动方向,判断是进入检测区域或是离开检测区域,因此需要设定警戒线。运动方向的判断一般通过检测目标的运动方向来判断。也就是运用运动估计的思想。运动方向坚持需要用图像的光流场估算图像的运动场,根据传统估算方法,需要对图像中的每一个象素进行计算,算出图像每一点的运动场,然后得到整幅图像的运动场,这样算法,计算量相当大,无法实时完成。我们采用基于块的运原创 2016-06-23 16:36:53 · 6478 阅读 · 0 评论 -
目标跟踪方法--CamShift 算法
一、概述 CamShift算法,全称是 Continuously AdaptiveMean Shift,顾名思义,它是对Mean Shift 算法的改进,能够自动调节搜索窗口大小来适应目标的大小,可以跟踪视频中尺寸变化的目标。它也是一种半自动跟踪算法,需要手动标定跟踪目标。基本思想是以视频图像中运动物体的颜色信息作为特征,对输入图像的每一帧分别作 Mean-Shift 运转载 2016-06-23 16:46:01 · 11516 阅读 · 1 评论 -
目标跟踪方法--Mean Shift 算法
一、概述 Mean-Shift,即均值向量偏移,该理论是一种无参数密度估计算法,最早由 Fukunaga 等人于1975年提出。cheng等人对基本的 Mean-Shift 算法进行了改进,一方面将核函数引入均值偏移向量,使得随着样本与被偏移点的距离不同,对应的偏移量对均值偏移向量的贡献也不同;另一方面,设定了一个权重系数,使得不同的样本点重要性不一样,这大大扩大了 Me转载 2016-06-23 16:46:39 · 2647 阅读 · 0 评论